1、训练目标(1)导数的概念;(2)导数的运算.训练题型(1)导数的四则运算;(2)曲线的切线问题;(3)复合函数求导.解题策略(1)求导数技巧:乘积可展开化为多项式,根式化为分数指数幂,绝对值化为分段函数;(2)求切线方程首先要确定切点坐标;(3)复合函数求导的关键是确定复合的结构,然后由外向内,逐层求导.1设函数f (x)ax32,若f(1)3,则a_.2(2015河北衡水中学高二调考)设f (x)为可导函数,且 5,则f(3)_.3曲线yln(x2)在点P(1,0)处的切线方程是_4在曲线yx2上切线倾斜角为的点是_5设曲线y在点(,1)处的切线与直线xay10平行,则实数a_.6曲线yxc
2、os x在点(,)处的切线方程为_7已知直线yx1与曲线yln(xa)相切,则a_.8设f (x)为可导函数,且满足 1,则曲线yf (x)在点(1,f (1)处的切线的斜率是_9设函数f (x)ax (a,bZ),曲线yf (x)在点(2,f (2)处的切线方程为y3.则函数f (x)的解析式为_10设函数f (x)cos(x)(02),曲线在点P(1,0)处的斜率为k1,所以切线方程为y0x1,即yx1.4(,)解析y (2xx)2x,令2xtan 1,得x,y()2,所求的坐标为(,)51解析y,y|x1.由条件知1,a1.62xy0解析因为y1sin x,所以k切2,所以所求切线方程为
3、y2(x),即2xy0.72解析设直线yx1与曲线yln(xa)的切点为(x0,y0),则y01x0,y0ln(x0a)又y,y|xx01,即x0a1.又y0ln(x0a),y00,则x01,a2.81解析 1, 1,f(1)1.9f (x)x解析f(x)a,由题意知:4a213a90,即a1或a(舍)b1,f (x)x.10.解析f(x)sin(x),f (x)f(x)cos(x)sin(x)2sin(x)若f (x)f(x)为奇函数,则f (0)f(0)0,即02sin(),所以k,kZ.又因为(0,),所以.11(,1)解析函数f (x)x3x在R上为单调递增函数,且为奇函数,由f (m
4、cos )f (1m)0,整理得f (mcos )f (m1),所以mcos m1对0恒成立,解得m1.121解析f2(x)f1(x)cos xsin x,f3(x)(cos xsin x)sin xcos x,f4(x)cos xsin x,f5(x)sin xcos x,以此类推,可得出fn(x)fn4(x),又f1(x)f2(x)f3(x)f4(x)0,f1()f2()f2 017()504f1()f2()f3()f4()f1()f1()1.1312x3y160或3x3y20解析设切点为(x0,x)由yx2,得kx2|xx0x.即切线斜率为x.切线方程为yxx(xx0)又切线过点P(2,),xx(2x0),即x3x40,x02或x01.切线过点P(2,),切线斜率为4或1.切线方程为y4(x2)或yx2,即12x3y160或3x3y20.14(2,15)解析设点P在坐标为(a,b),依题意得a2,b15,点P的坐标为(2,15)