1、第3课时等差数列的前n项和知能目标解读1.理解并掌握等差数列的前n项和公式及其推导过程,能够应用等差数列的前n项和公式解决有关等差数列的实际问题.2.体会等差数列的前n项和公式与二次函数的关系,能用二次函数的相关知识解决有关的数列问题.3.熟练掌握等差数列的五个基本量a1,d,n,an,Sn之间的联系,能够由其中的任意三个求出其余的两个.4.进一步熟悉由数列的前n项和Sn求通项的方法.重点难点点拨重点:探索等差数列前n项和公式的推导方法,掌握前n项和公式,会用公式解决一些实际问题.体会等差数列的前n项和与二次函数之间的联系.难点:等差数列前n项和公式的推导和应用公式解题时公式的选取.学习方法指
2、导1.等差数列前n项和公式中涉及五个量a1,d,n,an,Sn,已知其中任意三个就可以列方程组求另外两个(简称“知三求二”),它是方程思想在数列中的体现.2.等差数列求和公式的推导,用的是倒序相加法,要注意体会这种求和方法的适用对象和操作程序,并能用来解决与之类似的求和问题.注意公式Sn=,Sn=na1+d,Sn=nan-d之间可以相互转化.3.Sn是n的二次函数,an不一定是等差数列.如果Sn=an2+bn+c,则在c=0时an是等差数列,在c0时an不是等差数列;反过来an是等差数列,Sn的表达式可以写成Sn=an2+bn的形式,但当an是不为零的常数列时,Sn=na1是n的一次函数.知能自主梳理1.等差数列的前n项和公式若数列an是等差数列,首项为a1,公差为d,则前n项和Sn=.2.等差数列前n项和的性质(1)等差数列an的前k项和为Sk,则Sk,S2k-Sk,S3k-S2k,成公差为的等差数列.(2)等差数列an的前n项和为Sn,则也是.答案1. na1+d2.(1)k2d(2)等差数列