1、命题点3复数一、单项选择题12023新课标卷在复平面内,(13i)(3i)对应的点位于()A第一象限B第二象限C第三象限D第四象限22023全国甲卷若复数(ai)(1ai)2,aR,则a()A1B0C1D232023全国甲卷()A1B1C1iD1i42022新高考卷(22i)(12i)()A24iB24iC62iD62i52023河南郑州模拟已知z1i,则()AiBiCiDi62023河北衡水模拟已知复数z2i,且azzb0,其中a,b为实数,则()Aa1,b4Ba1,b4Ca1,b4Da1,b472023广东深圳模拟已知复数(1i)(1z)1i,则z的虚部为()A2B2iCiD182023江
2、苏盐城模拟已知a,bR,虚数z1bi是方程x2ax30的根,则|z|()ABC2D92023河南驻马店模拟复数z的实部与虚部之和为()A4B1C1D4102023江苏镇江模拟已知复数z112i,z22i(i为虚数单位),z3在复平面上对应的点分别为A,B,C.若四边形OABC为平行四边形(O为复平面的坐标原点),则复数3为()A13iB13iC13iD13i112023河北沧州模拟已知复数z满足z22z20,则复数z在复平面内对应的点位于()A第一、二象限B第三、四象限C第一、四象限D第二、三象限122023山东菏泽模拟已知i为虚数单位,且复数z满足z(12i)1i2023,则()A1B2CD
3、二、多项选择题132023广东佛山模拟设z,z1,z2是复数,则下列命题中正确的是()A若|z|1,则zz1B若|z|2,则zz4C若2i,则2D若,则z1z20142023山东青岛模拟关于x的方程x24的复数解为z1,z2,则()Az1z24Bz1与z2互为共轭复数C若z12i,则满足zz12i的复数z在复平面内对应的点在第二象限D若|z|1,则的最小值是3152023河北石家庄模拟已知复数z112i,复数z满足|zz1|2,则()Az115B2|z|2C复数z1在复平面内所对应的点的坐标是(1,2)D复数z在复平面内所对应的点为Z(x,y),则(x1)2(y2)24162023安徽六安模拟
4、下列命题正确的有()A已知复数z的共轭复数为z,则zz一定是实数B若a,b为向量,则|ab|a|b|C若z1,z2为复数,则|z1z2|z1|z2|D若a,b为向量,且|ab|ab|,则ab0答题区题号12345678910111213141516答案命题点3复数(小题突破)1解析:因为(13i)(3i)3i9i3i268i,所以该复数在复平面内对应的点为(6,8),位于第一象限,故选A.答案:A2解析:因为(ai)(1ai)aa2iia2a(1a2)i2,所以,解得a1.故选C.答案:C3解析:由题意知,1i,故选C.答案:C4解析:(22i)(12i)24i2i4i222i462i.故选D
5、.答案:D5解析:因为z1i,所以i,故选C.答案:C6解析:因为z2i,所以azzba(2i)(2i)b(2ab2)(a1)i,由azzb0,得,即.故选B.答案:B7解析:由题可得z111i,则z1i,故虚部为1.故选D.答案:D8解析:因为虚数z1bi(bR)是方程x2ax30的根,则(1bi)2a(1bi)30,即a4b2(2bab)i0,由复数相等得出,解得b22或b0,因为虚数z1bi中b0,所以b22,所以.故选B.答案:B9解析:因为z,所以复数z的实部与虚部分别是,则复数z的实部与虚部之和为1.故选C.答案:C10解析:因为复数z112i,z22i(i为虚数单位),z3在复平
6、面上对应的点分别为A,B,C,所以A(1,2),B(2,1),设C(x,y),因为OABC为平行四边形(O为复平面的坐标原点),所以,所以(1,3)(x,y),所以,所以z313i,所以z313i,故选B.答案:B11解析:设zabi,a,bR,所以z22z20a2b22abi2a2bi20,所以,解得a1,b1,所以z1i,故选D.答案:D12解析:因为z(12i)1i2023,所以z(12i)1i20231i450531i31i,所以z,所以ziiii,所以.故选D.答案:D13解析:若1,设zabi,所以a2b21,则zz(abi)2a22abib2不一定为1,故A错误;若2,设zabi
7、,所以a2b24,则zz(abi)(abi)a2b24一定为4,故B正确;若2i,设z2abi,z1(abi)2i2b2ai,则,22,故C正确;若|z1z2|z1z2|,设z1abi,z2cdi,|z1z2|,|z1z2|,所以(ac)2(bd)2(ac)2(bd)2,即acbd0,z1z2(abi)(cdi)(acbd)(adbc)i不一定为0,故D错误故选BC.答案:BC14解析:因为(2i)24,因此不妨令方程x24的复数解z12i,z22i,对于A,z1z22i(2i)4,A错误;对于B,z1与z2互为共轭复数,B正确;对于C,z12i,由zz12i,得zi,则复数z在复平面内对应的
8、点在第四象限,C错误;对于D,设zxyi(x,yR),由1,得x2y21,显然有1x1,由选项A知z1z24,因此|zz1z2|(x4)yi|3,当且仅当x1,即z1时取等号,D正确故选BD.答案:BD15解析:由已知112i,其对应点坐标为(1,2),C错;z1112225,A正确;由2知z对应的点在以z1对应点为圆心,2为半径的圆上,|z1|,因此22,B错误;z1对应点坐标为(1,2),因此D正确故选AD.答案:AD16解析:对于A,设zabi(a,bR),则zabi,故zzabiabi2aR,故A正确;对于B,a,b为向量,设夹角为,则,故B错误;对于C,设z1abi,z2cdi,a,b,c,dR,z1z2acadibcibd(acbd)(adbc)i,|z1z2|,|z1|z2|,所以|z1z2|z1|z2|,故C正确;对于D,a,b为向量,且,则a2b22aba2b22ab,即ab0,故D正确故选ACD.答案:ACD
Copyright@ 2020-2024 m.ketangku.com网站版权所有