ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:116.85KB ,
资源ID:2588865      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-2588865-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021_2022学年新教材高中数学第二章平面解析几何2.3.1圆的标准方程训练含解析新人教B版选择性必修第一册.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021_2022学年新教材高中数学第二章平面解析几何2.3.1圆的标准方程训练含解析新人教B版选择性必修第一册.docx

1、第二章平面解析几何2.3圆及其方程2.3.1圆的标准方程课后篇巩固提升必备知识基础练1.圆心为(-3,4),半径是2的圆的标准方程为()A.(x+3)2+(y-4)2=4B.(x-3)2+(y+4)2=4C.(x+3)2+(y-4)2=2D.(x-3)2+(y+4)2=2答案A2.方程y=9-x2表示的曲线是()A.一条射线B.一个圆C.两条射线D.半个圆答案D3.如图,圆C的部分圆弧在如图所示的网格纸上(小正方形的边长为1),图中直线与圆弧相切于一个小正方形的顶点,若圆C经过点A(2,15),则圆C的半径为()A.72B.8C.82D.10答案A解析圆C经过点(2,1)和点(2,15),故圆

2、心在直线y=8上.又过点(2,1)的圆的切线为y-1=-(x-2),故圆心在直线y-1=x-2上,即圆心在直线x-y-1=0上.由y=8,x-y-1=0可得圆心为(9,8),故圆的半径为(9-2)2+(8-1)2=72.4.已知一圆的圆心为点A(2,-3),一条直径的端点分别在x轴和y轴上,则圆的标准方程为()A.(x+2)2+(y-3)2=13B.(x-2)2+(y+3)2=13C.(x-2)2+(y+3)2=52D.(x+2)2+(y-3)2=52答案B解析如图,结合圆的性质可知,原点在圆上,圆的半径为r=(2-0)2+(-3-0)2=13.故所求圆的标准方程为(x-2)2+(y+3)2=

3、13.5.已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程为()A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0答案D解析圆x2+(y-3)2=4的圆心坐标为(0,3).因为直线l与直线x+y+1=0垂直,所以直线l的斜率k=1.由点斜式得直线l的方程是y-3=x-0,化简得x-y+3=0.6.将圆x2+y2=2沿x轴正方向平移2个单位后得到圆C,则圆C的标准方程为.答案(x-2)2+y2=27.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以点C为圆心,5为半径的圆的标准方程是.答案(x+1)2+(y-2)2=5解析

4、将直线方程整理为(x+1)a-(x+y-1)=0,可知直线恒过点(-1,2),从而所求圆的标准方程为(x+1)2+(y-2)2=5.8.若圆的方程为x+k22+(y+1)2=1-34k2,则当圆的面积最大时,圆心坐标和半径分别为、.答案(0,-1)1解析圆的方程为x+k22+(y+1)2=1-34k2,r2=1-34k20,rmax=1,此时k=0.圆心为(0,-1).9.求以A(2,2),B(5,3),C(3,-1)为顶点的三角形的外接圆的标准方程.解设所求圆的标准方程为(x-a)2+(y-b)2=r2,则有(2-a)2+(2-b)2=r2,(5-a)2+(3-b)2=r2,(3-a)2+(

5、-1-b)2=r2,解得a=4,b=1,r2=5,即ABC的外接圆的标准方程为(x-4)2+(y-1)2=5.10.已知点A(-1,2)和B(3,4).求:(1)线段AB的垂直平分线l的方程;(2)以线段AB为直径的圆的标准方程.解由题意得线段AB的中点C的坐标为(1,3).(1)A(-1,2),B(3,4),直线AB的斜率kAB=4-23-(-1)=12.直线l垂直于直线AB,直线l的斜率kl=-1kAB=-2,直线l的方程为y-3=-2(x-1),即2x+y-5=0.(2)A(-1,2),B(3,4),|AB|=(3+1)2+(4-2)2=20=25,以线段AB为直径的圆的半径R=12|A

6、B|=5.又圆心为C(1,3),所求圆的标准方程为(x-1)2+(y-3)2=5.关键能力提升练11.方程(x-1)x2+y2-3=0所表示的曲线是()A.一个圆B.两个点C.一个点和一个圆D.一条直线和一个圆答案D解析(x-1)x2+y2-3=0可化为x-1=0或x2+y2=3,方程(x-1)x2+y2-3=0表示一条直线和一个圆.12.已知直线(3+2)x+(3-2)y+5-=0恒过定点P,则与圆C:(x-2)2+(y+3)2=16有公共的圆心且过点P的圆的标准方程为()A.(x-2)2+(y+3)2=36B.(x-2)2+(y+3)2=25C.(x-2)2+(y+3)2=18D.(x-2

7、)2+(y+3)2=9答案B解析由(3+2)x+(3-2)y+5-=0,得(2x+3y-1)+(3x-2y+5)=0,则2x+3y-1=0,3x-2y+5=0,解得x=-1,y=1,即P(-1,1).圆C:(x-2)2+(y+3)2=16的圆心坐标是(2,-3),|PC|=(-1-2)2+(1+3)2=5,所求圆的标准方程为(x-2)2+(y+3)2=25,故选B.13.数学家欧拉于1765年在他的著作三角形的几何学中首次提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线.在平面直角坐标系中作ABC,在ABC中,AB

8、=AC=4,点B(-1,3),点C(4,-2),且其“欧拉线”与圆(x-3)2+y2=r2相切,则该圆的半径r为()A.1B.2C.2D.22答案B解析在ABC中,AB=AC=4,点B(-1,3),点C(4,-2),可得BC边上的高线、垂直平分线和中线三线合一,则其“欧拉线”为ABC边BC的垂直平分线,可得BC的中点为32,12,直线BC的斜率为3+2-1-4=-1,则BC的垂直平分线的斜率为1,所以BC的垂直平分线方程为y-12=x-32,即为x-y-1=0,其“欧拉线”与圆(x-3)2+y2=r2相切,所以圆心(3,0)到“欧拉线”的距离为d=|3-0-1|2=2,即半径r=2.14.已知

9、点A(-a,0),B(a,0)(a0),点C在圆(x-2)2+(y-2)2=2上,且满足ACB=90,则a的最小值是.答案2解析设C(2+2cos,2+2sin),AC=(2+2cos+a,2+2sin),BC=(2+2cos-a,2+2sin),ACB=90,ACBC=(2+2cos)2-a2+(2+2sin)2=0,a2=10+42(sin+cos)=10+8sin+42,18.a0,a2,32,a的最小值是2.15.已知圆C与圆(x-1)2+y2=1关于直线y=-x对称,则圆C的标准方程为.答案x2+(y+1)2=1解析由已知圆(x-1)2+y2=1,设其圆心为C1,则圆C1的圆心坐标为

10、(1,0),半径长r1=1.设圆心C1(1,0)关于直线y=-x对称的点的坐标为(a,b),即圆心C的坐标为(a,b),则ba-1(-1)=-1,-a+12=b2,解得a=0,b=-1.所以圆C的标准方程为x2+(y+1)2=1.16.已知三点A(3,2),B(5,-3),C(-1,3),以点P(2,-1)为圆心作一个圆,使A,B,C三点中一点在圆外,一点在圆上,一点在圆内,求这个圆的标准方程.解要使A,B,C三点中一点在圆外,一点在圆上,一点在圆内,则圆的半径是|PA|,|PB|,|PC|的中间值.因为|PA|=10,|PB|=13,|PC|=5,所以|PA|PB|0,1),那么点M的轨迹就

11、是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:x2+y2=1和点A-12,0,点B(1,1),M为圆O上动点,则2|MA|+|MB|的最小值为.答案10解析如图,取点K(-2,0),连接OM,MK.|OM|=1,|OA|=12,|OK|=2,|OK|OM|=|OM|OA|=2.又MOK=AOM,MOKAOM,|MK|MA|=|OM|OA|=2,|MK|=2|MA|,|MB|+2|MA|=|MB|+|MK|,|MB|+|MK|BK|,|MB|+2|MA|=|MB|+|MK|的最小值为|BK|,B(1,1),K(-2,0),|BK|=(-2-1)2+(0-1)2=10.19.已知圆C的圆心在直线x-3y=0上,且与y轴相切于点(0,1).(1)求圆C的方程;(2)若圆C与直线l:x-y+m=0交于A,B两点,分别连接圆心C与A,B两点,若CACB,求m的值.解(1)设圆心坐标为C(a,b),则a=3b,圆与y轴相切于点(0,1),则b=1,r=|a-0|,圆C的圆心坐标为(3,1),半径r=3.故圆的方程为(x-3)2+(y-1)2=9.(2)CACB,|CA|=|CB|=r,ABC为等腰直角三角形,|CA|=|CB|=r=3,圆心C到直线l的距离d=322.则d=|3-1+m|2=322,解得m=1或-5.6

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3