1、八年级数学上册第十四章整式的乘法与因式分解定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,则M与N的大小关系为()ABCD2、计算的结果为16,则m的值等于()A7B6C5D43、下列由左边
2、到右边的变形,属于因式分解的是()A(a+5)(a5)a225Bmx+my+2m(x+y)+2Cx29(x+3)(x3)D4、下列运算正确的是()A(a4)3=a7Ba4a3=a2C(3ab)2=9a2b2D-a4a6=a105、如果xm2,xn,那么xm+n的值为()A2B8C D26、已知甲、乙、丙均为含x的整式,且其一次项的系数皆为正整数若甲与乙相乘的积为,乙与丙相乘的积为,则甲与丙相乘的积为()ABCD7、计算(a+3)(a+1)的结果是()Aa22a+3Ba2+4a+3Ca2+4a3Da22a38、下列各式因式分解正确的是()Aa2+4ab+4b2=(a+4b)2B2a2-4ab+9
3、b2=(2a-3b)2C3a2-12b2=3(a+4b)(a-4b)Da(2a-b)+b(b-2a)=(a-b)(2a-b)9、分解因式4x2y2的结果是()A(4x+y)(4xy)B4(x+y)(xy)C(2x+y)(2xy)D2(x+y)(xy)10、已知,当时,则的值是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,则_2、若、互为相反数,c、d互为倒数,则_3、已知,则_4、已知关于的代数式是完全平方式,则_5、已知x2+mx+16能用完全平方公式因式分解,则m的值为 _三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中2、
4、如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积3、已知x23x+10,求x2的值4、第一步:阅读材料,掌握知识要把多项式分解因式,可以先把它的前两项分成组,并提出a,把它的后两项分成组,并提出b,从而得这时,由于中又有公因式,于是可提公因式,从而得到,因此有这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解第二步:理解知识,尝试填空:(1) 第三步:
5、应用知识,因式分解:(2) x2-(p+q)x+pq;(3)第四步:提炼思想,拓展应用(4)已知三角形的三边长分别是a,b,c,且满足a2+2b2+c2=2b(a+c),试判断这个三角形的形状,并说明理由5、阅读材料并解答问题:根据课本P100,我们已经知道,“多项式乘以多项式”法则可以用平面几何图形的面积来表示,如图1实际上还有一些代数等式也可以用这种形式来表示,例如:就可以用图2中、等图形的面积来表示(1)根据图1反映的平面几何图形的面积之间的数量关系,请用字母直接表示出“多项式乘以多项式”法则: ;(2)请直接写出图3所表示的代数等式: ;(3)试画出一个几何图形,使它的面积能表示,并直
6、接写出计算结果(请仿照图2中的图或图在几何图形上标出有关数量)-参考答案-一、单选题1、B【解析】【分析】利用完全平方公式把N-M变形,根据偶次方的非负性解答【详解】解:N-M=(m2-3m)-(m-4)=m2-3m-m+4=m2-4m+4=(m-2)20,N-M0,即MN,故选:B【考点】本题考查的是完全平方公式的应用,掌握完全平方公式、偶次方的非负性是解题的关键2、A【解析】【分析】根据幂的运算公式即可求解【详解】=16=24则2m-3-m=4解得m=7故选A【考点】此题主要考查幂的运算及应用,解题的关键是熟知幂的运算法则3、C【解析】【详解】试题解析:把一个多项式分解成几个整式积的形式,
7、叫因式分解,故选C.4、D【解析】【分析】根据积的乘方,同底数幂的除法,完全平方公式,同底数幂的乘法分别求出每个式子的值,再判断即可【详解】A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.【考点】本题考查完全平方公式, 同底数幂的乘法, 幂的乘方与积的乘方, 同底数幂的除法.5、C【解析】【分析】根据同底数幂的乘法进行运算即可【详解】解:如果xm2,xn,那么xm+nxmxn2故选:C【考点】本题考查了同底数幂的乘法,解题的关键是熟练掌握同底数幂的乘法公式6、B【解析】【分析】把题中的积分别分解因式后,确定出甲乙丙各自的整式,即可解答【详解】解:甲与乙相
8、乘的积为,乙与丙相乘的积为,甲为,乙为,丙为,则甲与丙相乘的积为,故选:B【考点】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键7、A【解析】【分析】运用多项式乘多项式法则,直接计算即可【详解】解:(a+3)(a+1)a23a+a+3a22a+3故选:A【考点】本题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加8、D【解析】【分析】根据因式分解的定义:把一个多项式写成几个因式的积的形式进行判断即可【详解】a2+4ab+4b2=(a+2b)2,故选项A不正确;2a
9、2-4ab+9b2=(2a-3b)2不是因式分解,B不正确;3a2-12b2=3(a+2b)(a-2b),故选项C不正确;a(2a-b)+b(b-2a)=(a-b)(2a-b)是因式分解,D正确,故选D【考点】本题考查的是因式分解的概念,把一个多项式写成几个因式的积的形式叫做因式分解,在判断一个变形是否是因式分解时,看是否是积的形式即可9、C【解析】【分析】按照平方差公式进行因式分解即可.【详解】解:4x2y2(2x+y)(2xy)故选:C【考点】此题主要考查了公式法分解因式,正确应用公式是解题关键10、A【解析】【分析】根据已知,得a=5b,c=5d,将其代入即可求得结果【详解】解:a=5b
10、,c=5d,故选:A【考点】本题考查的是求代数式的值,应先观察已知式,求值式的特征,采用适当的变形,作为解决问题的突破口二、填空题1、 ; 【解析】【分析】直接运用同底数幂的乘法和幂的乘方运算法则进行计算即可得到答案【详解】解:故答案为:8,16【考点】此题主要考查了同底数幂的乘法和幂的乘方运算法则的应用,掌握相关法则是解答此题的关键2、-2【解析】【分析】利用相反数,倒数的性质确定出a+b,cd的值,代入原式计算即可求出值【详解】解:根据题意得:a+b=0,cd=1,则原式=0-2=-2故答案为:-2【考点】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键3、-3【解析】【分析】原
11、式利用多项式乘以多项式法则计算,变形后,将m+n与mn的值代入计算即可求出值【详解】解:m+n=2,mn=-2,(1-m)(1-n)=1-(m+n)+mn=1-2-2=-3故答案为:-3【考点】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键4、5或-7#或【解析】【分析】根据完全平方公式的特点,可以发现9的平方根是3,进而确定a的值.【详解】解:-(a+1)x=2(3)x解得a=5或a=-7故答案为:或【考点】本题考查了完全平方公式的特点,即首平方、尾平方,二倍积在中央;另外9的算术平方根是3是易错点5、【解析】【分析】利用完全平方公式的结构特征判断,确定出m的值即可得到答案【详解】
12、解:要使得能用完全平方公式分解因式,应满足,故答案为:【考点】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键三、解答题1、;2【解析】【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入即可求解【详解】当时,原式【考点】本题考查了整式的化简求值,正确地把代数式化简是解题的关键2、(1)矩形的周长为4m;(2)矩形的面积为33【解析】【分析】(1)根据题意和矩形的周长公式列出代数式解答即可(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:mn,矩形的宽为:m+n,矩形的周长为:2(m-n)+(m+n)=4m
13、;(2)矩形的面积为S=(m+n)(mn)=m2-n2,当m=7,n=4时,S=72-42=33【考点】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答3、7【解析】【分析】先将等式两边同时除以x,并整理可得x3,然后利用完全平方公式的变形即可求出结论【详解】解:x23x+10,x30,x3,x2(x)223227【考点】此题考查的是等式的变形和完全平方公式的变形,掌握完全平方公式的变形是解题关键4、(1)(2)(3)(4)等边三角形,理由见详解【解析】【分析】(1)如果把一个多项式各项分组并提出公因式后,它们的另一个因式刚好相同,那么这个
14、多项式即可利用分组分解法来因式分解,据此即可求解;(2)先展开(pq)x,再利用分组分解法来因式分解,据此即可求解;(3)直接利用分组分解法来因式分解即可求解;(4)根据所给等式,先移项,再利用完全平方公式和等边三角形的判定求证即可【详解】解:(1)(2)(3)(4)等边三角形,理由如下:即这个三角形是等边三角形【考点】本题考查因式分解提公因式法,因式分解分组分解法,完全平方公式,等边三角形的判定,解题的关键是读懂材料并熟知因式分解的方法5、(1);(2);(3)见解析,【解析】【分析】(1)根据图1反映的平面几何图形的面积之间的数量关系,即可表示;(2)根据图3反映的平面几何图形的面积即可表示代数等式;(3)根据可知,表示为长为,宽为的矩形的面积,画图即可【详解】(1),故答案为:;(2)由图可得:,故答案为:;(3)表示的图形如下所示:【考点】本题考查多项式乘多项式的应用,掌握平面几何图形的面积表示多项式乘多项式是解题的关键