ImageVerifierCode 换一换
格式:PPT , 页数:30 ,大小:1.06MB ,
资源ID:25878      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-25878-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012优化方案数学精品课件(苏教版选修2-1):1.ppt)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2012优化方案数学精品课件(苏教版选修2-1):1.ppt

1、11.2 充分条件和必要条件学习目标1.理解必要条件、充分条件与充要条件的含义2结合具体命题,学会判断充分条件、必要条件、充要条件的方法 课堂互动讲练 知能优化训练 11.2课前自主学案 课前自主学案 1用语言、_或_表达的,可以判断_的陈述句叫_2命题的结构“若p,则q”,其中“p”是条件,“q”是_3命题:“若函数yf(x)是奇函数,则yf(x)的图象关于原点对称”是_命题,其逆命题是:若函数yf(x)的图象关于原点_,则函数yf(x)是_,也是_命题温故夯基符号式子真假命题结论真对称奇函数真1必要条件、充分条件和充要条件一般地,如果pq,那么称p是q的_,同时称q是p的_;如果pq,且q

2、p,那么称p是q的充分必要条件,简称为p是q的充要条件,记作pq;如果pq,且qp,那么称p是q的_;知新益能充分条件必要条件充分不必要条件如果pq,且qp,那么称p是q的_;如果pq,且qp,那么称p是q的_2借助集合之间的关系研究命题的充分性和必要性首先建立命题p,q相应的集合:必要不充分条件既不充分也不必要条件p:Ax|p(x)成立;q:Bx|q(x)成立(1)若AB,则p是q的_;(2)若AB,则p是q的_充分条件充分不必要条件若p是q的充分条件,p惟一吗?提示:不惟一如x3是x0的充分条件,x5,x10等都是x0的充分条件问题探究 课堂互动讲练 充分条件和必要条件的判定 考点突破(1

3、)直接判断型:命题的条件和结论较为简单,可直接利用相关知识判断二者之间的“”符号是否成立及方向,由此判断二者之间的充要关系(2)逆否命题型:如果命题的条件和结论都是否定的,不易直接判断二者之间的“”符号是否成立及方向,可考虑其逆否命题,即判断“p是q的什么条件”可转化为判断“非q是非p的什么条件”指出下列各组命题中p是q的什么条件(充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件)(1)p:数a能被6整除;q:数a能被3整除(2)p:x1;q:x21.(3)p:ABC有两个角相等;q:ABC是正三角形例1【思路点拨】判断pq及qp是否成立(4)p:|ab|ab;q:ab0.(5)

4、在ABC 中,p:AB;q:BCAC.(6)p:ab;q:ab0.当ab0时,|ab|ab,所以p是q的必要不充分条件(5)在ABC 中,ABBCAC,所以 p 是 q 的充要条件(6)因为 ab ab1,又ab1 aB,q:sinAsinB.(3)p:ab,c0,q:acbc.解:(1)pq,但qp,这是因为若y20时,p不成立所以p是q的充分不必要条件(2)在ABC中,ABsinAsinB,反之亦然所以p是q的充要条件(3)pq,但qp(当c0时,有ab),故p是q的充分不必要条件在有些含参数的数学命题中,可以借助p和q的关系,确定相应的等式(或不等式),建立关于参数的方程(或不等式),从

5、而求得参数的值(或取值范围)利用充分条件、必要条件、充要条件求参数的值 设命题 p:x232x120,命题 q:x2(2a1)xa(a1)0,若 q 是 p 的必要不充分条件求实数 a 的取值范围例2【思路点拨】q是p的必要不充分条件,即pq,qp,转化为集合间的包含关系,列出关于a的不等式即可【解】由 x232x120,解得12x1,即命题 p:12x1;由 x2(2a1)xa(a1)0 得(xa)x(a1)0,axa1,即命题 q:axa1.【名师点评】充分条件和必要条件可以用集合的观点来解释,因而在求涉及充要条件的参数的值时,应用集合的包含关系列出条件解答对于不等式的解集问题更是应用这种

6、处理办法q 是 p 的必要不充分条件,pq 且 q p.12,1 a,a1,结合数轴易知a12且 a11,0a12.互动探究2 本例中q:x2(2a1)xa(a1)0改为q:x2(2a1)xa(a1)0,则结果如何?解:由例题解答可知 p:12x1;q:xa 或 xa1.q 是 p 的必要不充分条件,pq 且 q p,12,1 (,aa1,),结合数轴易知 a1 或 a112,解得 a1 或 a12.要证明一个条件p是否是这个命题q的充要条件,需要证明两个命题“若p则q”为真和“若q则p”为真当然,也可以转化为集合的思想来证明,证明p与q的解集是相同的同时还要注意叙述的不同,不要搞错证明的方向

7、充要条件的证明(本题满分14分)已知数列an的前n项和为Snpnq(p0,且p1)求证:数列an为等比数列的充要条件为q1.【思路点拨】题目要求证明充要条件,因此证明时应分两个方面,即要证明充分性,又要证明必要性例3【规范解答】充分性:当 q1 时,a1p1;当 n2 时,anSnSn1pn1(p1),当 n1 时也成立所以 anpn1(p1),nN*.5 分又an1an pnp1pn1p1p,数列an为等比数列.7 分必要性:当 n1 时,a1S1pq;当 n2 时,anSnSn1pn1(p1).10 分p0,且 p1,an为等比数列,a2a1an1an p.pp1pq p,即 p1pq,q

8、1.13 分综上所述,q1 是数列an为等比数列的充要条件.14 分【名师点评】充要条件的证明首先要明确条件和结论分别是什么,证明时要明确充分性是条件推结论,必要性是结论推条件关于充要条件的判断的几种方法(1)定义法:应用定义法判断充要条件,一般按以下三步进行:分清条件和结论:分清哪个是条件,哪个是结论;找推式:判断“pq”及“qp”的真假;下结论:根据推式及定义下结论方法感悟(2)逆否法(等价法):“pq”表示p等价于q,要证pq,只需证它的逆否命题非q非p即可;同理要证pq,只需证非q非p即可,所以pq,只需非q非p.(3)利用集合间的包含关系:如果条件p和结论q都是以集合A、B的形式出现,那么若AB,则p是q的充分条件;若AB,则p是q的必要条件;若AB,则p是q的充要条件知能优化训练

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3