ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:144.50KB ,
资源ID:257034      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-257034-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(河南省2019年中考数学总复习核心母题一全等在几何探究题中的应用深度练习.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

河南省2019年中考数学总复习核心母题一全等在几何探究题中的应用深度练习.doc

1、全等在几何探究题中的应用深度练习1(2018襄阳)如图,已知点G在正方形ABCD的对角线AC上,GEBC,垂足为点E,GFCD,垂足为点F.(1)证明与推断:求证:四边形CEGF是正方形;推断:的值为_; (2)探究与证明:将正方形CEGF绕点C顺时针方向旋转角(045),如图所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图所示,延长CG交AD于点H.若AG6,GH2,则BC_2(2018益阳)如图,在矩形ABCD中,E是AD的中点,以点E为直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,F30.

2、(1)求证:BECE;(2)将EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动,若EF,EG分别与AB,BC相交于点M,N(如图)求证:BEMCEN;若AB2,求BMN面积的最大值;当旋转停止时,点B恰好在FG上(如图),求sinEBG的值参考答案1(1)证明: 四边形ABCD是正方形,BCD90,BCA45.GEBC,GFCD,CEGCFGECF90.四边形CEGF是矩形,CGEECG45.EGEC.四边形CEGF是正方形.(2)解:如解图,连接CG,由旋转性质可知BCEACG.在RtCEG和RtCBA中,cos 45,cos 45.ACGBCE.线段AG与BE之间的数量关系为

3、AGBE.(3)解:如解图,连接DF,由(2)知BCEACG,BECAGC.四边形CEGF是正方形,CEFCFECGF 45,CGEF.BEC180CEF135,AGC135.AGCCGF13545180.A,G,F三点在一条直线上又BCDECF90,BCEDCF.而BCDC,ECFC,第1题解图BECDFC(SAS)BEDF,BECDFC.,AG6,BEDF3.BEC135,CFE45,BFDDFCCFE1354590.又CHBF,CHDF.AGHAFD.GF3,.设AH2x,则AD3x,DHx.又由正方形ABCD和正方形CEGF,知ADCD3x,GCGF3,在RtCDH中,由DH2CD2C

4、H2,得x2(3x)2(23)2,解得x1,x2(不合题意,舍去)AD3,即BC3.故答案为3.2解:(1)矩形ABCD,ABDC,AD90,AEDE,ABEDCE,BECE;(2)AEBABE90,AEBCED90,第2题解图ABECED,CEDECB,ABEECB,BECMEN90,BEMCEN,由(1)得BECE,BEMCEN;由(1)得ABEDCE,BEACED,ABECED,BEAABE,ABAEDE2,设BMx,由得BEMCEN,BMCNx,BN4x,BMN面积x(4x)(x2)22,又0x2,当x2时,BMN面积最大,最大值为2.如解图,过点E作EHFG于点H.在RtABF中,F30,AB2,FA2,FEFAAE22,EH1,在RtBEH中,BE2,sinEBG.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1