ImageVerifierCode 换一换
格式:DOCX , 页数:30 ,大小:736.97KB ,
资源ID:2550475      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-2550475-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022-2023学年人教版九年级数学上册期中模拟考试试题 A卷(含答案详解).docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022-2023学年人教版九年级数学上册期中模拟考试试题 A卷(含答案详解).docx

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中模拟考试试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、二次函数的图象如图所示,对称轴是直线下列结论:;(为实数)其中结论正

2、确的个数为()A1个B2个C3个D4个2、2019年女排世界杯于9月在日本举行,中国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排精神如图是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作拋物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点)距球网的水平距离为2.5米,则排球运动路线的函数表达式为() A BCD3、若关于x的二次函数yax2+bx的图象经过定点(1,1),

3、且当x1时y随x的增大而减小,则a的取值范围是()ABCD4、一元二次方程,用配方法解该方程,配方后的方程为( )ABCD5、关于的一元二次方程的两根应为()AB,CD二、多选题(5小题,每小题4分,共计20分)1、如图是抛物线的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),点P在抛物线上,且在直线AB上方,则下列结论正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 AB方程有两个相等的实根CD点P到直线AB的最大距离2、二次函数y=ax2+bx+c(a0)的大致图象如图所示(1x=h2,0xA1)下列结论中正确的是()A2a+b0Babc0C若OC=2OA

4、,则2bac=4D3ac03、对于二次函数y=+2x下列结论中正确的个数为( )A它的对称轴是直线x=1B设=+2,=+2,则当时,有C它的图象与x轴的两个交点是(0,0)和(2,0)D当0x2时,y04、如图,若二次函数yax2+bx+c(a0)的图象的对称轴是直线x1,则下列四个结论中,错误的是()Aabc0B2ab0C4acb20D4a+c2b5、如图,二次函数yax2+bx+c的图象经过点A(4,0),其对称轴为直线x1,下列结论正确的是()Aa+b+c0Babc0C2a+b0D若P(6,y1),Q(m,y2)是抛物线上两点,且y1y2,则6m4第卷(非选择题 65分)三、填空题(5小

5、题,每小题5分,共计25分)1、若二次函数yx2+mx在1x2时的最大值为3,那么m的值是_2、小亮同学在探究一元二次方程的近似解时,填好了下面的表格:根据以上信息请你确定方程的一个解的范围是_3、如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴 线 封 密 内 号学级年名姓 线 封 密 外 的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B二次函数的图象经过、G、A三点,则该二次函数的解析式为_(填一般式)4、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:c=3;2

6、a+b=0;8a-b+c0;方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_(填序号)5、已知关于x的一元二次方程的一个根比另一个根大2,则m的值为_四、解答题(5小题,每小题8分,共计40分)1、某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系,(其中,且x为整数)(1)直接写出y与x的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多少?2、顶点为D的抛物线yx2+bx+c交

7、x轴于A、B(3,0),交y轴于点C,直线yx+m经过点C,交x轴于E(4,0)(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线yx+m于G,交抛物线于H,连接CH,将CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标3、解下列方程:(1);(2)4、今年忠县柑橘喜获丰收,某果园销售的柑橘“忠橙”和“爱媛”很受消费者的欢迎,“忠橙”售 线 封 密 内 号学级年名姓

8、 线 封 密 外 价80元/箱,“爱媛”售价60元/箱在11月第一周“忠橙”的销量比“爱媛”的销量多100箱,且这两种柑橘的总销售额为50000元(1)在11月第一周,该果园“忠橙”和“爱媛”的销量各为多少箱?(2)为了扩大销售,11月第二周“忠橙”售价降价,销量比第一周培加了,“爱媛”售价不变,销量比第一周增加了,结果这两种相橘第二周的总销售额比第一周的总销售额增加了,求的值5、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.-参考答案-一、单选题1、C【解析】【分析】由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得

9、到,可得出,选项错误;把代入中得,所以正确;由时对应的函数值,可得出,得到,由,得到,选项正确;由对称轴为直线,即时,有最小值,可得结论,即可得到正确【详解】解:抛物线开口向上,抛物线的对称轴在轴右侧,抛物线与轴交于负半轴,错误;当时,把代入中得,所以正确;当时,即,所以正确;抛物线的对称轴为直线,时,函数的最小值为,即,所以正确故选C【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右常数项决定抛物线与轴交点:抛物线与轴交于抛物

10、线与轴交点个数由判别式确定:时,抛物线与 线 封 密 内 号学级年名姓 线 封 密 外 轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点2、A【解析】【分析】由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0),设排球运动路线的函数表达式为:y=ax2+bx+c,将点A、B、C的坐标代入得关于a、b、c的三元一次方程组,解得a、b、c的值,则函数解析式可得,从而问题得解【详解】解:由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0)设排球运动路线的函数解析式为:y=ax2+bx+c,排球经过A、B、C三点,解

11、得: ,排球运动路线的函数解析式为,故选:A【考点】本题考查了根据实际问题列二次函数关系式并求得关系式,数形结合并明确二次函数的一般式是解题的关键3、D【解析】【分析】根据题意开口向上,且对称轴1,ab1,即可得到1,从而求解【详解】由二次函数yax2+bx可知抛物线过原点,抛物线定点(1,1),且当x-1时,y随x的增大而减小,抛物线开口向上,且对称轴1,ab1,a0,b1a,1,故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键4、D 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】按照配方法的步骤,移项,配

12、方,配一次项系数一半的平方.【详解】x22xm=0,x22x=m,x22x+1=m+1,(x1)2=m+1故选D【考点】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用5、B【解析】【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程即可【详解】x23ax+a2=0,=(3a)24a2=a2,x=.所以x1=a,x2=a.故答案选B.【考点】本题考查了解一元二次方程,解题的关键是根据公式法解一元二次方程.二、多选题1、BCD【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系、坐标系内直线的平移、利用配方法求二次三项式的最值即可一一判断【详

13、解】解:由图象可知,则,故A选项错误;由图象可知,直线与抛物线只有一个交点,则方程有两个相等的实根,故B选项正确;当时,抛物线由最大值,则,即,故C选项正确;设直线AB的表达式为,且A(1,3),B(4,0)在直线上,则,解得,即,由抛物线的对称轴为得,则,即, 线 封 密 内 号学级年名姓 线 封 密 外 又 A(1,3),B(4,0)在抛物线上,则,解得,将直线向上平移与抛物线有一个交点时至,要求点P到直线AB的最大距离,即点P为直线与抛物线的交点,过点作于,轴,如图所示,由直线AB可得,为等腰直角三角形,又直线由直线平移得到,且轴,,是等腰直角三角形,由平移的性质可设直线的表达式为,当与

14、抛物线有一个交点时,即,整理得,由于只有一个交点,则,解得,即直线AB向上平移了:,则,则,点P到直线AB的最大距离,故D选项正确,故选BCD【点睛】本题考查了二次函数的图象及性质、方程与二次函数的关系、函数与不等式的关系、平面直角坐标系内直线的平移,解题的关键学会利用函数图象解决问题,灵活运用相关知识解决问题,本题难点在于要求抛物线上的点到直线的最大距离即求直线平移至与抛物线有一个交点时交点到直线的距离2、ACD【解析】【分析】根据二次函数的图象和性质进行分析即可注意抛物线的开口方向以及对称轴的位置【详解】解:抛物线开口向下,抛物线的对称轴,2a+b0,故A正确; 线 封 密 内 号学级年名

15、姓 线 封 密 外 抛物线与y轴的交点在y轴的负半轴,abc0,故B错误;若OC=2OA,则A ,2bac=4,故C正确;抛物线的对称轴,当时,即,故D正确故选:ACD【点睛】本题考查了二次函数的图象与系数之间的关系,熟练运用抛物线的对称轴是解题的关键3、ACD【解析】【分析】利用公式法计算对称轴,利用解方程法确定交点坐标,根据函数图像及其开口判断y的属性,函数的增减性即可【详解】二次函数y=+2x,x=1,故A正确;=+2,=+2,(,),(,)都是二次函数y=+2x图像上的点,对称轴为x=1,a=-10,当1时,;当1时,;故B不正确;二次函数y=+2x,令y=0,得+2x=0,解得 它的

16、图象与x轴的两个交点是(0,0)和(2,0),故C正确;二次函数y=+2x的开口向下,且它的图象与x轴的两个交点是(0,0)和(2,0),当0x2时,y0,故D正确;故选ACD【点睛】本题考查了二次函数的对称性,增减性,与x轴的交点坐标,熟练掌握抛物线的性质是解题的关键4、BD【解析】【分析】根据图象得出a,b,c的符号,即可判断A选项,由对称轴的位置即可判断B选项,由抛物线与x轴的交点个数即可判断C选项,由图象知x2和x0时y的值相等,由此可判断D选项 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:抛物线的开口向下,a0,抛物线与y轴的交点在x轴上方,c0,抛物线的对称轴为直线x

17、1,b2a0,abc0,故A选项不合题意,b2a,2a-b0,故B选项合题意,抛物线与x轴有两个交点,b24ac0,4acb20,C选项不合题意,抛物线的对称轴为直线x1,x3和x0时,y的值相等,当x=-2时,y0,4a2b+c0,4a+c2b,D选项符合题意,故选:BD【点睛】本题考查了二次函数图象与系数的关系,其中a符号由抛物线的开口方向决定;当对称轴在y轴的左侧时,a与b同号;当对称轴在y轴的右侧时,a与b异号;c的符号由抛物线与y轴的交点决定;根的判别式的符号由抛物线与x轴交点个数决定;此外还要找出图象上的特殊点对应的函数值得正负进行判断5、ABD【解析】【分析】根据题意可得点A(4

18、,0)关于对称轴的对称点 ,从而得到当 时, ,再由 ,可得在对称轴右侧 随 的增大而增大,从而得到当 时, ;根据图象可得 , ,可得 ;再由 ,可得;然后根据P(6,y1)关于对称轴的对称点 ,可得当y1y2时,6m4,即可求解【详解】解:二次函数yax2+bx+c的图象经过点A(4,0),其对称轴为直线x1,点A(4,0)关于对称轴的对称点 ,即当 时, ,抛物线开口向上, ,在对称轴右侧 随 的增大而增大,当 时, ,故A正确;抛物线与 交于负半轴, 线 封 密 内 号学级年名姓 线 封 密 外 ,对称轴为直线x1, , ,即 , ,故B正确; ,故C错误;P(6,y1)关于对称轴的对

19、称点 ,当y1y2时,6m4,故D正确故选:ABD【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质,并利用数形结合思想解答是解题的关键三、填空题1、4或2【解析】【分析】根据抛物线的对称轴公式,即可建立关于m的等式,解方程求出m的值即可【详解】解:yx2+mx,抛物线开口向下,抛物线的对称轴为x,当1,即m2时,当x1时,函数最大值为3,1m3,解得:m4;当2,即m4时,当x2时,函数最大值为3,4+2m3,解得:m(舍去)当12,即2m4时,当x时,函数最大值为3,3,解得m2或m2(舍去),综上所述,m4或m2,故答案为:4或2【考点】本题考查了二次函数的最值,掌

20、握抛物线的对称轴公式是解题的关键2、【解析】【分析】观察表格可知,随x的值逐渐增大,ax2+bx+c的值在3.243.25之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在3.24x3.25之间【详解】根据表格可知,ax2+bx+c=0时,对应的x的值在3.24x3.25之间.故答案为3.24x3.25. 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了一元二次方程的知识点,解题的关键是根据表格求出一元二次方程的近似根.3、【解析】【分析】先由题意得到,再设设,由勾股定理得到,解得x的值,最后将点C、G、A坐标代入二次函数表达式,即可得到答案.【详解】解:点,反比例函

21、数经过点B,则点,则,设,则,由勾股定理得:,解得:,故点,将点C、G、A坐标代入二次函数表达式得:,解得:,故答案为【考点】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法.4、【解析】【分析】由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断;由抛物线的对称轴为直线x=1,即可判断;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断,由抛物线开口向下,得到a0,再由当x=-1时,即可判断【详解】解:二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),c=3,故正确;抛物线的对称轴为直线x=1,即,故正确;抛物线与x轴的一个交

22、点在-1到0之间,抛物线对称轴为直线x=1,抛物线与x轴的另一个交点在2到3之间,故正确;抛物线开口向下,a0,当x=-1时,即,故错误,故答案为:【考点】本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质5、1【解析】【分析】利用因式分解法求出x1,x2,再根据根的关系即可求解 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解(x-3m)(x-m)=0x-3m=0或x-m=0解得x1=3m,x2=m,3m-m=2解得m=1故答案为:1【考点】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的运用四、解答题1、(1);(2)当售价为70元时,商家所获利

23、润最大,最大利润是4500元【解析】【分析】(1)利用待定系数法分段求解函数解析式即可;(2)分别求出当时与当时的销售利润解析式,利用二次函数的性质即可求解【详解】解:(1)当时,设,将和代入,可得,解得,即;当时,设,将和代入,可得,解得,即;(2)当时,销售利润,当时,销售利润有最大值,为4000元;当时,销售利润,该二次函数开口向上,对称轴为,当时位于对称轴右侧,当时,销售利润有最大值,为4500元;,当售价为70元时,商家所获利润最大,最大利润是4500元【点睛】本题考查一次函数的应用、二次函数的性质,根据图象列出解析式是解题的关键2、 (1)yx2+2x+3;(2)S(x)2+;当x

24、时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】【分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式 线 封 密 内 号学级年名姓 线 封 密 外 (2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CGHG,列等式求解即可【详解】(1)将点E代入直线解析式中,04+m,解得m3,解析式为yx+3,C(0,3),B(3,0),则有,解得,抛物线的解

25、析式为:yx2+2x+3;(2)yx2+2x+3(x1)2+4,D(1,4),设直线BD的解析式为ykx+b,代入点B、D,解得,直线BD的解析式为y2x+6,则点M的坐标为(x,2x+6),S(3+62x)x(x)2+,当x时,S有最大值,最大值为(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,t+3),H(t,t2+2t+3),HG|t2+2t+3(t+3)|t2t|CGt,CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HGy轴,HGCF,HGHF,CGCF, 线 封 密 内 号学级年名姓 线 封 密 外 GHCCHF,FCHCHG,FCHFHC,GCHGHC,CGHG,

26、|t2t|t,当t2tt时,解得t10(舍),t24,此时点P(4,0)当t2tt时,解得t10(舍),t2,此时点P(,0)综上,点P的坐标为(4,0)或(,0)【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CGHG为解题关键3、(1),;(2),【解析】【分析】(1)确定公式中的a,b,c的值,计算判别式的值验证方程是否有根,若有解,将a,b,c的值代入求根公式即可(2)利用因式分解法解一元二次方程即可得【详解】解:(1),a=3,b=4,c=1, ,;(2)【点睛】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、公

27、式法、因式分解法、换元法等,熟练掌握各解法公式法掌握用于一般式,确定a、b、c的值,然后检验方程是否有解,若有解代入公式计算解决问题,因式分解法适合特殊的一元二次方程,要针对不同的方程选取恰当的方法是解题关键4、 (1)该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)40【解析】【分析】(1)设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,根据等量关系是“忠 线 封 密 内 号学级年名姓 线 封 密 外 橙”售价销量箱数+“爱媛”售价销量箱数=50000,列方程,解方程即可;(2)根据等量关系是“忠橙”降价后售价降价后销量箱数+“爱媛”售价增加后销量箱数=总销售额比第一

28、周的总销售额增加了,列方程,解方程即可(1)解:设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,由题意得,解得,经检验是原方程的根,答:该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)解:由题意得整理,得:,解得:,(不合题意,舍去),答:的值为40【点睛】本题考查列一元一次方程解销售问题应用题,列一元二次方程解应用题,掌握列一元一次方程,一元二次方程解应用题的方法与步骤,抓住等量关系“忠橙”售价销量箱数+“爱媛”售价销量箱数=50000列方程是解题关键5、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出

29、m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m的值【详解】(1)关于x的一元二次方程x2-6x+(4m+1)=0有实数根,=(-6)2-41(4m+1)0,解得:m2;(2)方程x2-6x+(4m+1)=0的两个实数根为x1、x2,x1+x2=6,x1x2=4m+1,(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3