ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:353.63KB ,
资源ID:253709      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-253709-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届新高考数学培优专练 专题19 利用导数求函数的最值(学生版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2023届新高考数学培优专练 专题19 利用导数求函数的最值(学生版).docx

1、专题19 利用导数求函数的最值一、单选题 1若函数yx3x2m在-2,1上的最大值为,则m等于( )A0B1C2D2已知函数,若对于任意的,存在唯一的,使得,则实数a的取值范围是( )A(e,4)B(e,4C(e,4)D(,43已知函数,对于任意都有,则实数的最小值为( )A0B2C4D64设函数当时(e为自然对数的底数),记的最大值为,则的最小值为( )A1BCeD5函数在区间上的最大值是( )ABCD6已知函数(为自然对数的底数),则以下结论正确的为( )A函数仅有一个零点,且在区间上单调递增;B函数仅有一个零点,且在上单调递减,在递增;C函数有二个零点,其中一个零点为0,另一个零点为负数

2、;D函数有二个零点,且当时,取得最小值为.7函数在区间上的最小值是( )ABC11D8某企业拟建造一个容器(不计厚度,长度单位:米),该容器的底部为圆柱形,高为,底面半径为,上部为半径为的半球形,按照设计要求容器的体积为立方米.假设该容器的建造费用仅与其表面积有关,已知圆柱形部分每平方米建造费用为3万元,半球形部分每平方米建造费用为4万元,则该容器的建造费用最小时,半径的值为( )A1BCD29下列关于函数的结论中,正确结论的个数是( )的解集是;是极大值,是极小值;没有最大值,也没有最小值;有最大值,没有最小值;有最小值,没有最大值.A1个B2个C3个D4个10函数的最小值是( )ABCD二

3、、多选题11在单位圆O:上任取一点,圆O与x轴正向的交点是A,将OA绕原点O旋转到OP所成的角记为,若x,y关于的表达式分别为,则下列说法正确的是( )A是偶函数,是奇函数;B在上为减函数,在上为增函数;C在上恒成立;D函数的最大值为.12若存在实常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立,则称此直线为和的“隔离直线”,已知函数,(e为自然对数的底数),则下列结论正确的是( )A在内单调递增B和之间存在“隔离直线,且b的最小值为4C和间存在“隔离直线”,且k的取值范围是D和之间存在唯一的“隔离直线”三、解答题13已知函数,.(1)判断函数的单调性;(2)若,判断是否存在

4、实数,使函数的最小值为2?若存在求出的值;若不存在,请说明理由;14已知函数在x=1处取得极值-6. (1)求实数a,b的值; (2)求函数f(x)在区间上的最大值和最小值.15已知函数.(1)求函数的单调区间;(2)在平面直角坐标系中,直线与曲线交于,两点,设点的横坐标为,的面积为.(i)求证:;(ii)当取得最小值时,求的值.16已知函数.(1)当时,求函数在上的最大值;(2)若函数在上单调递增,求实数a的取值范围.17已知函数,.(1)当时,求在上的最大值和最小值;(2)若在上单调,求的取值范围.18已知直线与抛物线交于A、B两点,P是抛物线C上异于A、B的一点,若重心的纵坐标为,且直线

5、、的倾斜角互补()求k的值()求面积的取值范围19某市作为新兴的“网红城市”,有很多风靡网络的“网红景点”,每年都有大量的游客来参观旅游。为提高经济效益,管理部门对某一景点进行了改造升级,经市场调查,改造后旅游增加值y万元投入万元之间满足:(a,b为常数),当万元时,万元;当万元时,万元.(参考数据:)(1)写出该景点改造升级后旅游增加利润万元与投入万元的函数解析式;(利润=旅游增加值投入)(2)投入多少万元时,旅游增加利润最大?最大利润是多少万元?(精确到0.1)20已知函数,(1)若曲线在点处的切线与直线重合,求的值;(2)若函数的最大值为,求实数的值;(3)若,求实数的取值范围21已知函

6、数,.(1)若函数在上存在单调递增区间,求实数的取值范围;(2)设.若,在上的最小值为,求的零点.22已知函数,且.(1)若函数在处取得极值,求函数的解析式;(2)在(1)的条件下,求函数的单调区间;(3)设,为的导函数.若存在,使成立,求的取值范围.23已知函数在时有极值0(1)求常数,的值;(2)求在区间上的最值24已知,函数(为自然对数的底数)(1)求函数的单调区间;(2)求函数在上的最大值25已知函数,其中是自然对数的底数.(1)已知,若,求x的取值范围;(2)若,存在最小值,且最小值为k,(i)若,求b的值;(ii)证明:.26已知函数的极值为.(1)求的值并求函数在处的切线方程;(

7、2)已知函数,存在,使得成立,求得最大值.27已知函数,且函数的图象在点处的切线斜率为(1)求b的值;(2)求函数的最值;28已知函数.(1)求不等式的解集;(2)求函数在区间上的最大值和最小值.29如图,某校园有一块半径为的半圆形绿化区域(以为圆心,为直径),现对其进行改建,在的延长线上取点,在半圆上选定一点,改建后绿化区域由扇形区域和三角形区域组成,设.(1)当时,求改建后的绿化区域边界与线段长度之和;(2)若改建后绿化区域的面积为,写出关于的函数关系式,试问为多大时,改建后的绿化区域面积取得最大值.30已知函数(其中),为的导数.(1)求导数的最小值;(2)若不等式恒成立,求的取值范围.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1