ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:102.01KB ,
资源ID:253600      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-253600-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届新高考数学专题复习 专题44 巧妙设点研究圆锥曲线问题(学生版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2023届新高考数学专题复习 专题44 巧妙设点研究圆锥曲线问题(学生版).docx

1、专题44 巧妙设点研究圆锥曲线问题解析几何题的解题思路一般很容易觅得,实际操作时,往往不是因为难于实施,就是因为实施起来运算繁琐而被卡住,最终放弃此解法,因此方法的选择特别重要从思想方法层面讲,解析几何主要有两种方法:一是设线法;二是设点法此题的两种解法分属于设点法和设线法一般地,设线法是比较顺应题意的一种解法,它的参变量较少,目标集中,思路明确;而设点法要用好点在曲线上的条件,技巧性较强,但运用得好,解题过程往往会显得很简捷解析几何大题肩负着对计算能力考查的重任,所以必要的计算量是少不了的,不要一遇到稍微有一点计算量的题目就想放弃,坚持到底才是胜利一、题型选讲题型一、巧妙设点,降低运算量例1

2、、(2018南京、盐城一模)如图,在平面直角坐标系xOy中,椭圆C:1(ab0)的下顶点为B,点M,N是椭圆上异于点B的动点,直线BM,BN分别与x轴交于点P,Q,且点Q是线段OP的中点当点N运动到点处时,点Q的坐标为.(1) 求椭圆C的标准方程;(2) 设直线MN交y轴于点D,当点M,N均在y轴右侧,且2时,求直线BM的方程例2、(2018南京学情调研)如图,已知椭圆1(ab0)的离心率e,一条准线方程为x2.过椭圆的上顶点A作一条与x轴,y轴都不垂直的直线交椭圆于另一点P,P关于x轴的对称点为Q.(1) 求椭圆的方程;(2) 若直线AP,AQ与x轴交点的横坐标分别为m,n,求证:mn为常数

3、,并求出此常数题型二、设而不求法,降低运算量例3、【2019年高考浙江卷】如图,已知点为抛物线的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧记的面积分别为(1)求p的值及抛物线的准线方程;(2)求的最小值及此时点G的坐标例4、(2016南京三模)如图,在平面直角坐标系xOy中,已知椭圆C:1(ab0)的离心率为,点(2,1)在椭圆C上(1) 求椭圆C的方程;(2) 设直线l与圆O:x2y22相切,与椭圆C相交于P,Q两点. 若直线l过椭圆C的右焦点F,求OPQ的面积;求证:OPOQ.题型三、巧妙设点解决向量问题例5、(20

4、16南通、扬州、淮安、宿迁、泰州二调)如图,在平面直角坐标系xOy中,已知椭圆1(ab0)的离心率为.A为椭圆上异于顶点的一点,点P满足2.(1) 若点P的坐标为(2,),求椭圆的方程;(2) 设过点P的一条直线交椭圆于B,C两点,且m,直线OA,OB的斜率之积为,求实数m的值题型四、抛物线的特殊设点技巧例6、【2018年高考浙江卷】如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+=1(x1)的左、右顶点,G为E的上顶点,P为直线x=6上的动点,PA与E的另一交点

5、为C,PB与E的另一交点为D(1)求E的方程;(2)证明:直线CD过定点.2、(2020届山东省潍坊市高三上学期统考)已知椭圆的左、右焦点分别为,过点的直线与椭圆交于两点,延长交椭圆于点,的周长为8.(1)求的离心率及方程;(2)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.3、【2019年高考全国卷理数】已知点A(2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G.(i)证明:是直角三角形;(ii)求面积的最大值.4、(2016南京、盐城一模)如图,在平面直角坐标系xOy中,设点M(x0,y0)是椭圆C:y21上的一点,从原点O向圆M:(xx0)2(yy0)2r2作两条切线分别与椭圆C交于点P,Q,直线OP,OQ的斜率分别记为k1,k2.(公众号:高中数学最新试题)(1) 若圆M与x轴相切于椭圆C的右焦点,求圆M的方程;(2) 若r.求证:k1k2;求OPOQ的最大值

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1