1、42分层随机抽样的均值与方差43百分位数新课程标准解读核心素养1.结合实例,能用样本估计总体的取值规律掌握分层随机抽样的均值与方差数据分析2.结合实例,能用样本估计百分位数,理解百分位数的统计含义数据运算、数据分析甲班和乙班各有学生20人、40人,甲班的数学成绩的平均数为80分,方差为2,乙班的数学成绩的平均数为82分,方差为4.问题甲班和乙班这60人的数学成绩的平均分是81分吗?方差是3吗?为什么?知识点一分层随机抽样的均值与方差1分层随机抽样的平均数(1)一般地,将样本a1,a2,am和样本b1,b2,bn合并成一个新样本,则这个新样本的平均数为.于是,当已知上述两层构成的新样本中每层的平
2、均数分别为1和2时,可得这个新样本的平均数为12.记w1,w2,则这个新样本的平均数为w11w22,其中w1,w2称为权重(2)设样本中不同层的平均数和相应权重分别为1,2,n和w1,w2,wn,则这个样本的平均数为w11w22wnn.为了简化表示,引进求和符号,记作w11w22wnnii.2分层随机抽样的方差设样本中不同层的平均数分别为1,2,n,方差分别为s,s,s,相应的权重分别为w1,w2,wn,则这个样本的方差为s2is(i)2,其中为这个样本的平均数已知某省二、三、四线城市数量之比为136,2020年8月份调查得知该省所有城市房产均价为1.2万元/平方米,方差为20,二、三、四线城
3、市的房产均价分别为2.4万元/平方米,1.8万元/平方米,0.8万元/平方米,三、四线城市房价的方差分别为10,8,则二线城市的房价的方差为_解析:设二线城市的房价的方差为s2,由题意可知20s2(1.22.4)210(1.21.8)28(1.20.8)2,解得s2118.52,即二线城市的房价的方差为118.52.答案:118.52知识点二百分位数1p分位数一般地,当总体是连续变量时,给定一个百分数p(0,1),总体的p分位数有这样的特点:总体数据中的任意一个数小于或等于它的可能性是p.2四分位数25%,50%,75%分位数是三个常用的百分位数把总体数据按照从小到大排列后,这三个百分位数把总
4、体数据分成了4个部分,在这4个部分取值的可能性都是.因此这三个百分位数也称为总体的四分位数3计算p分位数的一般步骤第1步,按照从小到大排列原始数据;第2步,计算inp;第3步,若i不是整数,大于i的最小整数为j,则p分位数为第j项数据;若i是整数,则p分位数为第i项与第(i1)项数据的平均数1某班级人数为50,班主任老师说“90%的同学能够考取本科院校”,这里的“90%”是百分位数吗?提示:不是是指能够考取本科院校的同学占同学总数的百分比2“这次数学测试成绩的70%分位数是85分”这句话是什么意思?提示:有70%的同学数学测试成绩小于或等于85分1下列关于一组数据的50%分位数的说法正确的是(
5、)A50%分位数就是中位数B总体数据中的任意一个数小于它的可能性一定是50%C它一定是这组数据中的一个数据D它适用于总体是离散型的数据解析:选A由百分位数的意义可知选项B、C、D错误25,6,7,8,9,10,11,12,13,14的25%分位数为_,75%分位数为_,90%分位数为_解析:由于共有10个数字,则1025%2.5,1075%7.5,1090%9.故25%分位数为7,75%分位数为12,90%分位数为13.5.答案:71213.5分层随机抽样背景下的样本数字特征估计例1(链接教科书第171页例6)工厂为了解每个工人对某零件的日加工量,统计员分别从两车间抽取了甲、乙两人日加工量的两
6、个样本抽到甲的一个样本容量为10,样本平均数为5,方差为1;乙的一个样本容量为12,样本平均数为6,方差为2.现将这两组样本合在一起,求合在一起后的样本的平均数与方差解设抽到甲的一个样本数据为x1,x2,x10;乙的一个样本数据为y1,y2,y12,由题意知i5,方差s2(xi5)21,i6,方差t2(yi6)22,则合在一起后的样本容量为22,w甲,w乙,样本平均数为w甲w乙565.55,样本方差为b2w甲s2()2w乙t2()21.79.求分层随机抽样背景下的样本平均数、方差设样本中不同分层的平均数、方差和相应权重分别为1,2,n、s,s,s和w1,w2,wn,则样本平均数w11w22wn
7、nii.样本方差s2is(i)2 跟踪训练在某学校为了调查高一年级学生每周的锻炼时间(单位:h),甲同学抽取了一个容量为10的样本,并算得样本的平均数为5,方差为9;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6,方差为16.已知甲、乙两同学抽取的样本合在一起组成一个容量为18的样本,求合在一起后的样本均值与样本方差解:由题意知,甲同学抽取的样本容量m10,样本平均值为5,样本方差为s29;乙同学抽取的样本容量n8,样本平均值为6,样本方差t216.故合在一起后的样本平均值为w甲w乙565.44.样本方差为w甲s2(55.44)2w乙t2(65.44)290.442160.56212.
8、36.百分位数的计算例2(链接教科书第174页例7)从某珍珠公司生产的产品中,任意抽取12颗珍珠,得到它们的质量(单位:g)如下:79,9.0,8.9,8.6,8.4,8.5,85,8.5,9.9,7.8,8.3,8.0.(1)分别求出这组数据的25%,75%,95%分位数;(2)请你找出珍珠质量较小的前15%的珍珠质量;(3)若用25%,50%,95%分位数把公司生产的珍珠划分为次品、合格品、优等品和特优品,依照这个样本的数据,给出该公司珍珠等级的划分标准解(1)将所有数据从小到大排列,得78,7.9,8.0,8.3,8.4,8.5,8.5,8.5,8.6,8.9,9.0,9.9,因为共有1
9、2个数据,所以1225%3,1275%9,1295%11.4,则25%分位数是8.15,75%分位数是8.75,95%分位数是第12个数据为9.9.(2)因为共有12个数据,所以1215%1.8,则15%分位数是第2个数据为7.9.即产品质量较小的前15%的产品有2个,它们的质量分别为7.8 g,7.9 g.(3)由(1)可知珍珠质量的25%分位数是8.15 g,50%分位数为8.5 g,95%分位数是9.9 g,所以质量小于或等于8.15 g的珍珠为次品,质量大于8.15 g且小于或等于8.5 g的珍珠为合格品,质量大于8.5 g且小于或等于9.9 g的珍珠为优等品,质量大于9.9 g的珍珠
10、为特优品计算百分位数时,可先将这组数据按从小到大的顺序排列,再根据定义计算 跟踪训练某校年级组长为了解本校高三学生一模考试的数学成绩(单位:分),随机抽取30名学生的一模数学成绩,如下所示:1101441256389121145123749697 142 115 68 83 116 139 124 85 98132 147 128 133 99 117 107 113 96 141估计该校高三学生一模数学成绩的25%分位数为_分,50%分位数为_分解析:把这30名学生的数学成绩按从小到大的顺序排列,得63,68,74,83,85,89,96,96,97,98,99,107,110,113,11
11、5,116,117,121,123,124,125,128,132,133,139,141,142,144,145,147.因为3025%7.5,3050%15,所以这30名学生一模数学成绩的25%分位数为96分,50%分位数为115.5(分)据此可以估计本校高三学生一模数学成绩的25%分位数为96分,50%分位数为115.5分答案:96115.5百分位数的应用例3某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200千瓦时的部分按0.5元/千瓦时收费,超过200千瓦时但不超过400千瓦时的部分按0.8元/千瓦时收费,超过400千瓦时的部分按1.
12、0元/千瓦时收费(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:千瓦时)的函数解析式;(2)为了了解居民的用电情况,通过抽样获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图若这100户居民中,今年1月份用电费用不超过260元的占80%,求a,b的值;(3)根据(2)中求得的数据计算用电量的75%分位数解(1)当0x200时,y0.5x;当200400时,y0.52000.82001.0(x400)x140.所以y与x之间的函数解析式为y(2)由(1)可知,当y260时,x400,即用电量不超过400千瓦时的占80%,结合频率分布直方图可知解得a0.0
13、01 5,b0.002 0.(3)设75%分位数为m,因为用电量低于300千瓦时的所占比例为(0.0010.0020.003)10060%,用电量不超过400千瓦时的占80%,所以75%分位数m在300,400)内,所以0.6(m300)0.0020.75,解得m375千瓦时,即用电量的75%分位数为375千瓦时母题探究(变设问)根据本例(2)中求得的数据计算用电量的15%分位数解:设15%分位数为x,因为用电量低于100千瓦时的所占比例为0.00110010%,用电量不超过200千瓦时的占30%,所以15%分位数x在100,200)内,所以0.1(x100)0.0020.15,解得x125千
14、瓦时,即用电量的15%分位数为125千瓦时根据频率分布直方图计算样本数据的百分位数,首先要理解频率分布直方图中各组数据频率的计算,其次估计百分位数在哪一组,再应用方程的思想方法,设出百分位数,解方程可得 跟踪训练某市为了了解人们对“中国梦”的伟大构想的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了x人,按年龄分成5组(第一组:20,25),第二组:25,30),第三组:30,35),第四组:35,40),第五组:40,45),得到如图所示的频率分布直方图,已知第一组有5人(1)求x;(2)求抽取的x人的年龄的50%
15、分位数(结果保留整数);(3)以下是参赛的10人的成绩:90,96,97,95,92,92,98,88,96,99,求这10人成绩的20%分位数和平均数,以这两个数据为依据,评价参赛人员对“中国梦”的伟大构想的认知程度,并谈谈你的感想解:(1)第一组频率为0.0150.05,所以x100.(2)由题图可知年龄低于30岁的所占比例为40%,年龄低于35岁的所占比例为70%,所以抽取的x人的年龄的50%分位数在30,35)内,由30532(岁),所以抽取的x人的年龄的50%分位数为32岁(3)把参赛的10人的成绩按从小到大的顺序排列:88,90,92,92,95,96,96,97,98,99,计算
16、1020%2,所以这10人成绩的20%分位数为91(分),这10人成绩的平均数为(88909292959696979899)94.3(分)评价:从百分位数和平均数来看,参赛人员的认知程度很高感想:略(结合本题和实际,符合社会主义核心价值观即可)1期中考试后,班长算出了全班40人数学成绩的平均分为M,如果把M当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均数为N,那么等于()A.B1C. D2解析:选B平均数是用所有数据的和除以数据的总个数而得到的设40位同学的成绩为xi(i1,2,40),则M,NM,故1.2下列一组数据的25%分位数是()21,3.0,3.2,3.8,3.4
17、,4.0,4.2,4.4,5.3,5.6A3.2 B3.0C4.4 D2.5解析:选A把这组数据按照由小到大排列,可得:2.1,3.0,3.2,3.4,3.8,4.0,4.2,4.4,5.3,5.6,由i1025%2.5,不是整数,则第3个数据3.2,是25%分位数3某厂10名工人在一小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a,50%分位数为b,则有()Aa13.7,b15.5 Ba14,b15Ca12,b15.5 Da14.7,b15解析:选D把该组数据按从小到大的顺序排列为10,12,14,14,15,15,16,17,17
18、,17,其平均数a(10121414151516171717)14.7,50%分位数为b15.4某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间5,40中,其频率分布直方图如图所示估计棉花纤维的长度的90%分位数是()A32.5 mm B33 mmC33.5 mm D34 mm解析:选A棉花纤维的长度在30 mm以下的比例为(0.010.010.040.060.05)50.8585%,在35 mm以下的比例为85%10%95%,因此,90%分位数一定位于30,35内,由30532.5(mm),可以估计棉花纤维的长度的90%分位数是32.5 mm.
Copyright@ 2020-2024 m.ketangku.com网站版权所有