ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:595KB ,
资源ID:245458      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-245458-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文([原创]2012届舜耕中学高三数学(理科)一轮复习资料第八编立体几何§8.4直线、平面平行的判定及性质(教案).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

[原创]2012届舜耕中学高三数学(理科)一轮复习资料第八编立体几何§8.4直线、平面平行的判定及性质(教案).doc

1、高三数学(理)一轮复习 教案 第八编 立体几何 总第38期8.4 直线、平面平行的判定及性质基础自测1.下列命题中,正确命题的个数是 .若直线l上有无数个点不在平面内,则l;若直线l与平面平行,则l与平面内的任意一条直线都平行;如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;若直线l与平面平行,则l与平面内的任意一条直线都没有公共点.答案 12.下列条件中,不能判断两个平面平行的是 (填序号).一个平面内的一条直线平行于另一个平面,一个平面内的两条直线平行于另一个平面一个平面内有无数条直线平行于另一个平面,一个平面内任何一条直线都平行于另一个平面答案 3.对于平面和

2、共面的直线m、n,下列命题中假命题是 (填序号).若m,mn,则n,若m,n,则mn若m,n,则mn,若m、n与所成的角相等,则mn答案 4.已知直线a,b,平面,则以下三个命题:若ab,b,则a;若ab,a,则b;若a,b,则ab.其中真命题的个数是 .答案 05.如图所示,在三棱柱ABCA1B1C1中,M、N分别是BC和A1B1的中点.求证:MN平面AA1C1.证明 设A1C1中点为F,连接NF,FC,N为A1B1中点,NFB1C1,且NF=B1C1, 又由棱柱性质知B1C1 BC,又M是BC的中点, NF MC,四边形NFCM为平行四边形.MNCF,又CF平面AA1C1, MN平面AA1

3、C1,MN平面AA1C1.例题精讲 例1 如图所示,正方体ABCDA1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF平面ABCD.证明 方法一 分别过E,F作EMAB于M,FNBC于N,连接MN.BB1平面ABCD,BB1AB,BB1BC,EMBB1,FNBB1,EMFN.又B1E=C1F,EM=FN,故四边形MNFE是平行四边形,EFMN.又MN平面ABCD,EF平面ABCD,所以EF平面ABCD.方法二 过E作EGAB交BB1于G,连接GF,则,B1E=C1F,B1A=C1B, ,FGB1C1BC,又EGFG=G,ABBC=B,平面EFG平面ABC

4、D,而EF平面EFG,EF平面ABCD.例2 已知P为ABC所在平面外一点,G1、G2、G3分别是PAB、PCB、PAC的重心.(1)求证:平面G1G2G3平面ABC;(2)求SSABC.(1)证明 如图所示,连接PG1、PG2、PG3并延长分别与边AB、BC、AC交于点D、E、F,连接DE、EF、FD,则有PG1PD=23, PG2PE=23,G1G2DE.又G1G2不在平面ABC内,G1G2平面ABC.同理G2G3平面ABC.又因为G1G2G2G3=G2,平面G1G2G3平面ABC.(2)解 由(1)知=,G1G2=DE.又DE=AC,G1G2=AC.同理G2G3=AB,G1G3=BC.G

5、1G2G3CAB,其相似比为13,SSABC=19.例3 如图所示,平面平面,点A,C,点B,D,点E,F分别在线段AB,CD上,且AEEB=CFFD.(1)求证:EF;(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60,求EF的长.(1)证明 当AB,CD在同一平面内时,由,平面平面ABDC=AC,平面平面ABDC=BD,ACBD,AEEB=CFFD,EFBD,又EF,BD,EF.当AB与CD异面时,设平面ACD=DH,且DH=AC.,平面ACDH=AC,ACDH,四边形ACDH是平行四边形,在AH上取一点G,使AGGH=CFFD,又AEEB=CFFD,GF

6、HD,EGBH,又EGGF=G,平面EFG平面.EF平面EFG,EF.综上,EF.(2)解 如图所示,连接AD,取AD的中点M,连接ME,MF.E,F分别为AB,CD的中点,MEBD,MFAC,且ME=BD=3,MF=AC=2,EMF为AC与BD所成的角(或其补角),EMF=60或120,在EFM中由余弦定理得,EF=,即EF=或EF=.巩固练习 1.如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.解 SG平面DEF,证明如下:方法一 连接CG交DE于点H,如图所示.

7、DE是ABC的中位线,DEAB.在ACG中,D是AC的中点, 且DHAG.H为CG的中点.FH是SCG的中位线,FHSG.又SG平面DEF,FH平面DEF,SG平面DEF.方法二 EF为SBC的中位线,EFSB.EF平面SAB,SB平面SAB,EF平面SAB.同理可证,DF平面SAB,EFDF=F,平面SAB平面DEF,又SG平面SAB,SG平面DEF.2.如图所示,在正方体ABCDA1B1C1D1中,E、F、G、H分别是BC、CC1、C1D1、A1A的中点.求证:(1)BFHD1;(2)EG平面BB1D1D;(3)平面BDF平面B1D1H.证明 (1)如图所示,取BB1的中点M,易证四边形H

8、MC1D1是平行四边形,HD1MC1.又MC1BF,BFHD1.(2)取BD的中点O,连接EO,D1O, 则OE DC,又D1G DC,OE D1G,四边形OEGD1是平行四边形,GED1O.又D1O平面BB1D1D,EG平面BB1D1D.(3)由(1)知D1HBF,又BDB1D1,B1D1、HD1平面HB1D1,BF、BD平面BDF,且B1D1HD1=D1, DBBF=B,平面BDF平面B1D1H.3.如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB平面EFGH,CD平面EFGH.(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.(1)证

9、明 四边形EFGH为平行四边形,EFHG.HG平面ABD,EF平面ABD.EF平面ABC,平面ABD平面ABC=AB,EFAB.AB平面EFGH.同理可证,CD平面EFGH. (2)解 设EF=x(0x4),由于四边形EFGH为平行四边形,.则=1-.从而FG=6-.四边形EFGH的周长l=2(x+6-)=12-x.又0x4,则有8l12,四边形EFGH周长的取值范围是(8,12).回顾总结 知识方法思想课后练习 一、填空题1.下列命题,其中真命题的个数为 .直线l平行于平面内的无数条直线,则l;若直线a在平面外,则a;若直线ab,直线b,则a,若直线ab,b,那么直线a就平行于平面内的无数条

10、直线.答案 12.写出平面平面的一个充分条件 (写出一个你认为正确的即可).答案 存在两条异面直线a,b,a,b,a,b3.对于不重合的两个平面与,给定下列条件:存在平面,使得,都垂直于;存在平面,使得,都平行于;存在直线l,直线m,使得lm;存在异面直线l、m,使得l,l,m,m.其中,可以判定与平行的条件有 (写出符合题意的序号).答案 4.(2008海南,宁夏文,12)已知平面平面,=l,点A,Al,直线ABl,直线ACl,直线m,m,则下列四种位置关系中,一定成立的是 .ABmACm ABAC答案 5.(2008湖南理,5)设有直线m、n和平面、.下列命题不正确的是 (填序号).若m,

11、n,则mn,若m,n,m,n,则若,m,则m,若,m,m,则m答案 6.下列关于互不相同的直线m,l,n和平面,的四个命题:若m,l=A,点Am,则l与m不共面;若m,l是异面直线,l,m,且nl,nm,则n;若l,m,则lm;若l,m,lm=A,l,m,则.其中假命题的序号是 .答案 7.考察下列三个命题,在“ ”处都缺少同一个条件,补上这个条件使其构成真命题(其中l,m为不同的直线,、为不重合的平面),则此条件为 . 答案 l8.如图所示,ABCDA1B1C1D1是棱长为a的正方体,M,N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=,过P,M,N的平面交上底

12、面于PQ,Q在CD上,则PQ= .答案 a二、解答题9.如图所示,在正方体ABCDA1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ平面PAO?解 当Q为CC1的中点时,平面D1BQ平面PAO.Q为CC1的中点,P为DD1的中点,QBPA.P、O为DD1、DB的中点,D1BPO.又POPA=P,D1BQB=B,D1B平面PAO,QB平面PAO,平面D1BQ平面PAO.10.正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ平面BCE.证明 方法一 如图所示,作PMAB交BE

13、于M,作QNAB交BC于N,连接MN. 正方形ABCD和正方形ABEF有公共边AB,AE=BD.又AP=DQ,PE=QB,又PMABQN,PM QN,四边形PMNQ为平行四边形,PQMN.又MN平面BCE,PQ平面BCE,PQ平面BCE.方法二 如图所示,连接AQ,并延长交BC于K,连接EK,AE=BD,AP=DQ,PE=BQ,=又ADBK,=由得=,PQEK.又PQ平面BCE,EK平面BCE,PQ平面BCE.方法三 如图所示,在平面ABEF内,过点P作PMBE,交AB于点M,连接QM.PMBE,PM平面BCE, 即PM平面BCE,=又AP=DQ,PE=BQ,=由得=,MQAD,MQBC,又M

14、Q平面BCE,MQ平面BCE.又PMMQ=M,平面PMQ平面BCE, PQ平面PMQ,PQ平面BCE.11.(2008海南、宁夏文,18)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和左视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连接BC,证明:BC平面EFG.(1)解 如图(1)所示.图(1)(2)解 所求多面体体积V=V长方体-V正三棱锥=446-(22)2=(cm3). (3)证明 如图(2),在长方体ABCDABCD中,连接AD,则ADBC. 因为E,

15、G分别为AA,AD的中点,所以ADEG,从而EGBC. 又BC平面EFG, 图(2)所以BC面EFG.12.如图所示,正四棱锥PABCD的各棱长均为13,M,N分别为PA,BD上的点,且PMMA=BNND=58.(1)求证:直线MN平面PBC;(2)求线段MN的长.(1)证明 连接AN并延长交BC于Q,连接PQ,如图所示.ADBQ,ANDQNB,=, 又=,=,MNPQ,又PQ平面PBC,MN平面PBC,MN平面PBC.(2)解 在等边PBC中,PBC=60,在PBQ中由余弦定理知PQ2=PB2+BQ2-2PBBQcosPBQ=132+-213=,PQ=,MNPQ,MNPQ=813,MN=7.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3