1、京改版八年级数学上册期中考试试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知a为整数,且为正整数,求所有符合条件的a的值的和()A8B12C16D102、下列分式,中,最简分式有()A1个B2个C3
2、个D4个3、如图,在数轴上表示实数的点可能()A点PB点QC点MD点N4、对于数字-2+,下列说法中正确的是()A它不能用数轴上的点表示出来B它比0小C它是一个无理数D它的相反数为2+5、在下列各数中是无理数的有(),(相邻两个之间有个),A个B个C个D个二、多选题(5小题,每小题4分,共计20分)1、下列各式中,当x取某一值时没有意义的是()ABCD2、若化简后的结果是整数,则n的值可能是()A2B4C6D83、下列计算不正确的是()ABCD4、下列说法不正确的是()A二次根式有意义的条件是x0B二次根式有意义的条件是x3C若a为实数,则()2D若y,则y0,x25、下列说法不正确的是()A
3、无理数就是开方开不尽的数B无理数是无限不循环小数C带根号的数都是无理数D无限小数都是无理数第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、+_2、把分式化为最简分式为_3、如图,已知数轴上的点A、B、C、D分别表示数、1、2、3,则表示数的点P应落在线段_上(从“”,“”,“”,“”中选择)4、(2)3的立方根为_5、若关于的分式方程有增根,则的值为_.四、解答题(5小题,每小题8分,共计40分)1、班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大
4、巴后继续前行,结果比队伍提前15分钟到达基地问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?2、先化简,再求值:-,其中a=(3-)0+-.3、化简(1)(2)4、如图,一只蚂蚁从点沿数轴向右爬了2个单位长度到达点,点表示,设点所表示的数为(1)求的值;(2)在数轴上还有、两点分别表示实数和,且有与互为相反数,求的平方根5、计算:(1)(2)-参考答案-一、单选题1、C【解析】【分析】首先对于分式进行化简,然后根据a为整数、分式值为正整数可求出a的值,最后将a的所有值相加即可【详解】解:,a为整数,且分式的值为正整数,a51,5,a6,10,所有符合条件的
5、a的值的和:6+1016故选:C【考点】本题考查了分式的混合运算,对分式的分子和分母能够正确分解因式是解题的关键2、B【解析】【分析】根据最简分式的定义(分式的分子和分母除1以外没有其它的公因式,叫最简分式)逐个判断即可【详解】解:,故原式不是最简分式;是最简分式,是最简分式,故原式不是最简分式,最简分式有2个故选:B【考点】本题考查了最简分式的定义,能熟记最简分式的定义是解此题的关键3、C【解析】【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题【详解】解:91516,34,对应的点是M故选:C【考点】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理
6、数之间,进而求解4、C【解析】【分析】根据数轴的意义,实数的计算,无理数的定义,相反数的定义判断即可【详解】A数轴上的点和实数是一一对应的,故该说法错误,不符合题意;B,故该说法错误,不符合题意;C是一个无理数,故该说法正确,符合题意;D的相反数为,故该说法错误,不符合题意;故选:C【考点】本题考查数轴的意义,实数的计算,无理数的定义,相反数的定义,熟练掌握相关计算法则是解答本题的关键5、B【解析】【分析】根据无理数是无限不循小数,可得答案【详解】解:,是无理数,故选:B【考点】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数二、多选题1、ABC【解析】【分析】根据分式
7、有意义,分母不等于0对各选项分析判断即可得解【详解】解:A、当x=-即2x+1=0时,分式无意义,故本选项符合题意;B、当x=-即2x+1=0时,分式无意义,故本选项符合题意;C、当x=0即=0时,分式无意义,故本选项符合题意;D、无论x取何值,2x2+11,分式都有意义,故本选项不符合题意;故选:ABC【考点】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义分母为零;(2)分式有意义分母不为零2、AD【解析】【分析】分别把n的值代入二次根式,根据二次根式的性质化简,判断即可【详解】解:A、当n=2时,2,是整数,符合题意;B、当n=4时,2,不是整数,不符合题意
8、;C、当n=6时,2,不是整数,不符合题意;D、当n=8时,4,是整数,符合题意;故选:AD【考点】本题考查的是二次根式的化简,掌握二次根式的性质:是解题的关键3、ABD【解析】【分析】根据根式的性质即可化简求值【详解】解:A、是最简二次根式,不能再化简,故A符合题意;B、=,故B符合题意;C、,故C不符合题意;D. 根据二次根式乘法法则的条件知,D中所给的算式、无意义,故D符合题意;故选ABD【考点】本题考查了利用二次根式的性质进行化简,属于简单题,熟悉二次根式的性质是解题关键4、ABC【解析】【分析】根据二次根式有意义的条件和分式有意义的条件逐个判断即可【详解】解:A、要使有意义,必须x-
9、10,即x1,故本选项符合题意;B、要使有意义,必须x-30,即x3,故本选项符合题意;C、当a0时,()2才和相等,当a0时,无意义,故本选项符合题意;D、要使y=成立,必须y0,x-2,故本选不项符合题意;故选ABC【考点】本题考查了二次根式有意义的条件和分式有意义的条件,能熟记二次根式有意义的条件和分式有意义的条件是解此题的关键5、ACD【解析】【分析】根据无理数的定义以及性质,对选项逐个判断即可【详解】解:A、无理数包含开方开不尽的数,选项说法错误,符合题意;B、无限不循环小数统称无理数,选项正确,不符合题意;C、带根号的数都是无理数,说法错误,比如,为有理数,符合题意;D、无限不循环
10、小数是无理数,无限循环小数是有理数,选项错误,符合题意;故选ACD【考点】此题考查了无理数的定义以及性质,无限不循环小数是无理数,熟练掌握无理数的有关性质是解题的关键三、填空题1、7【解析】【分析】本题涉及平方、三次根式化简2个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】解:(3)2+927故答案为7【考点】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握平方、三次根式等考点的运算2、【解析】【分析】根据分式的性质,进行约分即可,最简分式定义,一个分式的分子与分母没有非零次的公因式或公因数时叫最简分式【详解】故
11、答案为:【考点】本题考查了最简分式,掌握分式的约分,因式分解是解题的关键3、【解析】【分析】用有理数逼近无理数,求无理数的近似值【详解】解:,故表示数的点P应落在线段上故答案为:【考点】此题主要考查了估算无理数的大小估算及应用,正确掌握估算及应用是解此题关键4、-2【解析】【分析】根据立方根的定义,掌握运算法则即可求出【详解】解:(-2)3=-8,-8的立方根是-2,故答案为:-2【考点】本题考查了立方根的知识,掌握运算法则是关键5、3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3 m=3故答案为3
12、【考点】考查分式方程的增根问题;增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值四、解答题1、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里【解析】【分析】(1)根据“大巴车行驶全程所需时间=小车行驶全程所需时间+小车晚出发的时间+小车早到的时间”列分式方程求解可得;(2)根据“从学校到相遇点小车行驶所用时间+小车晚出发时间=大巴车从学校到相遇点所用时间”列方程求解可得【详解】(1)设大巴的平均速度为x公里/时,则小车的平均速度为1.5x公里/时,根据题意,得:
13、=+解得:x=40经检验:x=40是原方程的解,1.5x=60公里/时答:大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)设苏老师赶上大巴的地点到基地的路程有y公里,根据题意,得:+=2、,;.【解析】【分析】根据分式的运算法则及混合运算顺序先把分式化为最简分式,再求得a的值,代入即可求解.【详解】解:原式=-=-=-=.a=(3-)0+-=1+3-1=3,原式=-.【考点】本题考查了分式的化简求值,把分式化为最简分式及正确求得a的值是解决问题的关键.3、(1);(2)【解析】【分析】(1)分式的约分计算,注意约分结果应为最简分式;(2)分式的约分,先将分子分母的多项式进行
14、因式分解,然后再进行约分【详解】解:(1)(2)【考点】本题考查分式的约分,掌握运算法则准确计算是解题关键4、(1)2;(2)4【解析】【分析】(1)先求出m2,进而化简|m1|m1|,即可;(2)根据相反数和非负数的意义,列方程求出c、d的值,进而求出2c3d的值,再求出2c3d的平方根【详解】(1)由题意得:m2,则m10,m10,|m1|m1|m11m2;(2)与互为相反数,+=0,|2cd|0且0,解得:c2,d4,2c3d16,2c3d的平方根为4【考点】本题主要考查数轴、相反数的定义,求绝对值,掌握求绝对值的法则以及绝对值与算术平方根的非负性,是解题的关键5、(1);(2)【解析】【分析】(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可【详解】解:(1)=;(2) =【考点】本题主要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键