ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:220.63KB ,
资源ID:240099      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-240099-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(五年高考真题2022届高考数学复习第八章第六节空间向量的应用理全国通用.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

五年高考真题2022届高考数学复习第八章第六节空间向量的应用理全国通用.docx

1、考点空间向量及其应用1(2022陕西,18)如图1,在直角梯形 ABCD中,ADBC,BAD,ABBC1,AD2,E是AD的中点,O是AC与BE的交点将ABE沿BE折起到A1BE的位置,如图2.(1)证明:CD平面A1OC;(2)若平面A1BE平面BCDE,求平面A1BC与平面A1CD夹角的余弦值(1)证明在图1中,因为ABBC1,AD2,E是AD的中点,BAD,所以BEAC,即在图2中,BEOA1,BEOC,且A1OOCO, 图1从而BE平面A1OC,又在直角梯形ABCD中,ADBC,BCAD,E为AD中点,所以BC綉ED,所以四边形BCDE为平行四边形,故有CDBE,所以CD平面A1OC.

2、(2)解由已知,平面A1BE平面BCDE,又由(1)知,BEOA1,BEOC,所以A1OC为二面角A1BEC的平面角,所以A1OC, 图2如图,以O为原点,建立空间直角坐标系,因为A1BA1EBCED1,BCED,所以B,E,A1,C,得,(,0,0),设平面A1BC的法向量n1(x1,y1,z1),平面A1CD的法向量n2(x2,y2,z2),平面A1BC与平面A1CD夹角为,则得取n1(1,1,1);得取n2(0,1,1),从而cos |cos|,即平面A1BC与平面A1CD夹角的余弦值为.2(2022天津,17)如图,在四棱柱ABCDA1B1C1D1中,侧棱A1A底面ABCD,ABAC,

3、AB1,ACAA12,ADCD,且点M和N分别为B1C和D1D的中点(1)求证:MN平面ABCD;(2)求二面角D1ACB1的正弦值;(3)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长解如图,以A为原点建立空间直角坐标系,依题意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,2,2),又因为M,N分别为B1C和D1D的中点,得M,N(1,2,1)(1)证明依题意,可得n(0,0,1)为平面ABCD的一个法向量,由此可得n0,又因为直线MN平面ABCD,所以MN

4、平面ABCD.(2)(1,2,2),(2,0,0),设n1(x,y,z)为平面ACD1的法向量,则即不妨设z1,可得n1(0,1,1)设n2(x,y,z)为平面ACB1的法向量,则又(0,1,2),得不妨设z1,可得n2(0,2,1)因此有cosn1,n2,于是sinn1,n2.所以,二面角D1ACB1的正弦值为.(3)依题意,可设,其中0,1,则E(0,2),从而(1,2,1),又n(0,0,1)为平面ABCD的一个法向量,由已知,得cos,n,整理得2430,又因为0,1,解得2,所以,线段A1E的长为2.3(2022江西,19)如图,四棱锥PABCD中,PA平面ABCD,E为BD的中点,

5、G为PD的中点,DABDCB,EAEBAB1,PA,连接CE并延长交AD于F. (1)求证:AD平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值(1)证明在ABD中,因为E是BD的中点,所以EAEBEDAB1,故BAD,ABEAEB,因为DABDCB,所以EABECB,从而有FEDBECAEB,所以FEDFEA,故EFAD,AFFD,又因为PGGD,所以FGPA.又PA平面ABCD,所以GFAD,故AD平面CFG.(2)解以点A为坐标原点建立如图所示的坐标系,则A(0,0,0),B(1,0,0),C,D,P,故,.设平面BCP的法向量n1(1,y1,z1),则解得即n1.设平面DCP的

6、法向量n2(1,y2,z2),则解得即n2(1,2)从而平面BCP与平面DCP的夹角的余弦值为cos.4.(2022湖北,19)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC平面ABC,E,F分别是PA,PC的中点(1)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(2)设(1)中的直线l与圆O的另一个交点为D,且点Q满足,记直线PQ与平面ABC所成的角为,异面直线PQ与EF所成的角为,二面角ElC的大小为,求证:sin sin sin .(1)解直线l平面PAC,证明如下:连接EF,因为E,F分别是PA,PC的中点,所以EFAC.又EF平面

7、ABC,且AC平面ABC,所以EF平面ABC.而EF平面BEF,且平面BEF平面ABCl,所以EFl.因为l平面PAC,EF平面PAC,所以直线l平面PAC. (2)证明法一(综合法)如图1,连接BD,由(1)可知交线l即为直线BD,且lAC.因为AB是O的直径,所以ACBC,于是lBC, 图1已知PC平面ABC,而l平面ABC,所以PCl.而PCBCC,所以l平面PBC.连接BE,BF,因为BF平面PBC,所以lBF.故CBF就是二面角ElC的平面角,即CBF.由,作DQCP,且DQCP.连接PQ,DF,因为F是CP的中点,CP2PF,所以DQPF,从而四边形DQPF是平行四边形,PQFD.

8、连接CD,因为PC平面ABC,所以CD是FD在平面ABC内的射影,故CDF就是直线PQ与平面ABC所成的角,即CDF.又BD平面PBC,有BDBF,知BDF为锐角,故BDF为异面直线PQ与EF所成的角,即BDF,于是在RtDCF,RtFBD,RtBCF中,分别可得sin ,sin ,sin ,从而sin sin sin ,即sin sin sin .法二(向量法)如图2,由,作DQCP,且DQCP.连接PQ,EF,BE,BF,BD,由(1)可知交线l即为直线BD.以点C为原点,向量,所在直线分别为x、y、z轴,建立如图所示的空间直角坐标系,设CAa,CBb,CP2c,则有C(0,0,0),A(a,0,0),B(0,b,0),P(0,0,2c),Q(a,b,c),E,F(0,0,c)于是(a,0,0), 图2(a,b,c),(0,b,c),所以cos ,从而sin .又取平面ABC的一个法向量为m(0,0,1),可得sin ,设平面BEF的一个法向量为n(x,y,z),所以由可得取n(0,c,b)于是|cos |,从而sin .故sin sin sin ,即sin sin sin .7

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1