ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:1.04MB ,
资源ID:231012      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-231012-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(四川省棠湖中学2019-2020学年高一数学下学期第四学月考试试题 理(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

四川省棠湖中学2019-2020学年高一数学下学期第四学月考试试题 理(含解析).doc

1、四川省棠湖中学2019-2020学年高一数学下学期第四学月考试试题 理(含解析)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.第I卷选择题(60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项是符合题目要求的.1.在下列结论中,正确的为( )A. 两个有共同起点的单位向量,其终点必相同B. 向量与向量的长度相等C. 向量就

2、是有向线段D. 零向量是没有方向的【答案】B【解析】【分析】逐一分析选项,得到答案【详解】A.单位向量的方向任意,所以当起点相同时,终点在以起点为圆心的单位圆上,终点不一定相同,所以选项不正确;B. 向量与向量是相反向量,方向相反,长度相等,所以选项正确;C.向量是既有大小,又有方向的向量,可以用有向线段表示,但不能说向量就是有向线段,所以选项不正确;D.规定零向量的方向任意,而不是没有方向,所以选项不正确.故选B.【点睛】本题考查了向量的基本概念,属于基础题型.2.已知,且,则( )A. B. C. D. 【答案】A【解析】【分析】利用垂直向量的坐标表示可得出关于的等式,解出即可.【详解】由

3、,且,所以,解得.故选:A.【点睛】本题考查利用平面向量垂直求参数,考查计算能力,属于基础题.3.在ABC中,已知,则B等于( )A. 30B. 60C. 30或150D. 60或120【答案】A【解析】【分析】由正弦定理知,所以得或,根据三角形边角关系可得【详解】由正弦定理得,所以或,又因在三角形中,所以有,故,答案选A【点睛】本题主要考查正弦定理在解三角形中的应用,较简单基础4.九章算术中有这样一个问题:今有竹九节,欲均减容之(其意为:使容量均匀递减),上三节容四升,下三节容二升,中三节容几何?()A. 二升B. 三升C. 四升D. 五升【答案】B【解析】【分析】由题意可得,上、中、下三节

4、的容量成等差数列再利用等差数列的性质,求出中三节容量,即可得到答案【详解】由题意,上、中、下三节的容量成等差数列,上三节容四升,下三节容二升,则中三节容量为,故选B【点睛】本题主要考查了等差数列的性质的应用,其中解答中熟记等差数列的等差中项公式是解答的关键,着重考查了运算与求解能力,属于基础题5.在等差数列中,则的值()A. B. C. D. 【答案】B【解析】【分析】根据等差数列的性质,求得,再由,即可求解.【详解】根据等差数列的性质,可得,即,则,故选B.【点睛】本题主要考查了等差数列的性质,以及特殊角的三角函数值的计算,着重考查了推理与运算能力,属于基础题.6.已知,则( )A. B.

5、C. D. 【答案】A【解析】【分析】利用诱导公式和倍角公式,即可求解.【详解】由,得,得答案选A【点睛】本题考查诱导公式和倍角公式,记准公式,正确计算是解 题的关键.7.已知向量满足,则( )A. B. C. D. 2【答案】A【解析】【分析】将两边平方,化简求解即可得到结果【详解】由,即,又,则.所以本题答案为A.【点睛】本题考查平面向量的数量积运算和模的基本知识,熟记模的计算公式是关键,属基础题.8.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得BCD15,BDC30,CD30,并在点C测得塔顶A的仰角为60,则塔高AB等于( )A. B. C. D. 【

6、答案】D【解析】【分析】在三角形中,利用正弦定理求得,然后在三角形中求得.【详解】在BCD中,CBD1801530135.由正弦定理得,所以BC.在RtABC中,ABBCtan ACB1515.故选:D【点睛】本小题主要考查正弦定理解三角形,考查解直角三角形,属于基础题.9.在中,(a,b,c分别为角A,B,C的对边),则的形状为( )A. 等边三角形B. 直角三角形C. 等腰三角形或直角三角形D. 等腰直角三角形【答案】B【解析】【分析】由二倍角公式和余弦定理化角为边后变形可得【详解】,整理得,三角形为直角三角形故选:B【点睛】本题考查三角形形状的判断,考查二倍角公式和余弦定理,用余弦定理化

7、角为边是解题关键10.已知、为锐角,则( )A. B. C. D. 【答案】C【解析】【分析】求出,然后利用两角和的正切公式可求得的值.【详解】为锐角,则,所以,.故选:C.【点睛】本题考查利用两角和的正切公式求值,考查计算能力,属于基础题.11.函数的最大值为( )A. B. C. D. 2【答案】A【解析】由题意,得;故选A.12.在ABC中,角A,B,C所对的边长分别为,且满足,则 的最大值是()A 1B. C. D. 3【答案】C【解析】csinA=acosC,由正弦定理可得sinCsinA=sinAcosC,tanC=,即C=,则A+B=,B=A,0A,sinA+sinB=sinA+

8、sin(A)=sinA+=sinA+cos A=sin(A),0A,A+,当A+=时,sinA+sinB取得最大值,故选C第II卷非选择题(90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知角的终边与单位圆交于点则_.【答案】【解析】【分析】直接利用三角函数的坐标定义求解.【详解】由题得.故答案为【点睛】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.14.等差数列中,则数列前9项的和等于_【答案】99【解析】分析:由等差数列的性质可求得a4,=13,a6=9,从而有a4+a6=22,由等差数列的前n项和公式即可求得答案详解:在等差数列an中,a

9、1+a4+a7=39,a3+a6+a9=27,a4=13,a6=9,a4+a6=22,又a4+a6=a1+a9,数列an的前9项之和故答案为99.点睛:本题考查等差数列的性质,掌握等差数列的性质与前n项和公式是解决问题的关键,属于中档题15.已知等比数列中,为的两个根,则_.【答案】64【解析】【分析】根据韦达定理可求得,由等比数列的性质即可求出,再次利用等比数列的性质即可得解.【详解】因为为的两个根且为等比数列,所以,又,所以,则.故答案为:64【点睛】本题考查等比数列的性质,韦达定理,属于基础题.16.已知向量,则在方向上的投影为_.【答案】【解析】【分析】设与的夹角为,利用平面向量数量积

10、的坐标运算可求得在方向上的投影为,即可得解.【详解】设与的夹角为,所以,在方向上的投影为.故答案为:.【点睛】本题考查平面向量投影的计算,涉及平面向量数量积的坐标运算,考查计算能力,属于基础题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知公差不为零的等差数列中,且成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1) ;(2) .【解析】试题分析:设等差数列的公差,利用首项和公差表示数列的项,利已知三项成等比列方程求出公差,写出等差数列的通项公式,根据,求出数列的通项公式,由于适合使用分组求和,所以利用分组求和法求出数列的前n项的和,注意利用等

11、差数列和等比数列 的前n项和公式的使用.试题解析:(1)设数列公差为 成等比数列(舍)或.(2)令.【点睛】本题是等差数列与等比数列及数列求和综合题,设等差数列的公差,利用首项和公差表示数列的项,利已知三项成等比列方程求出公差,写出等差数列的通项公式,根据,求出数列的通项公式,由于适合使用分组求和,所以利用分组求和法求出数列的前n项的和,注意利用等差数列和等比数列 的前n项和公式的使用.18. 在ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A3cos(B+C)=1(1)求角A的大小;(2)若ABC的面积S=5,b=5,求sinBsinC的值【答案】(1)(2)【解析】试题分析:

12、(1)根据二倍角公式,三角形内角和,所以,整理为关于二次方程,解得角的大小;(2)根据三角形的面积公式和上一问角,代入后解得边,这样就知道,然后根据余弦定理再求,最后根据证得定理分别求得和.试题解析:(1)由cos 2A3cos(BC)1,得2cos2A3cos A20,即(2cos A1)(cos A2)0,解得cos A或cos A2(舍去)因为0A,所以A.(2)由Sbcsin Abcbc5,得bc20,又b5,知c4.由余弦定理得a2b2c22bccos A25162021,故a.从而由正弦定理得sin B sin Csin Asin Asin2A.考点:1.二倍角公式;2.正余弦定理

13、;3.三角形面积公式.【方法点睛】本题涉及到解三角形问题,所以有关三角问题的公式都有涉及,当出现时,就要考虑一个条件,,这样就做到了有效的消元,涉及三角形的面积问题,就要考虑公式,灵活使用其中的一个.19.已知函数.(1)求的最小正周期及单调递减区间;(2)若,且,求的值.【答案】(1)最小正周期为,单调递减区间为(2).【解析】【分析】(1)利用二倍角降幂公式和辅助角公式将函数的解析式化为,利用周期公式可得出函数的最小正周期,然后解不等式可得出函数的单调递减区间;(2)由可得出角的值,再利用两角和的正切公式可计算出的值.【详解】(1)函数的最小正周期为,令,解得.所以,函数的单调递减区间为;

14、(2),即,.,故,因此.【点睛】本题考查三角函数基本性质,考查两角和的正切公式求值,解题时要利用三角恒等变换思想将三角函数的解析式化简,利用正弦、余弦函数的性质求解,考查运算求解能力,属于中等题.20.已知等差数列中,公差,且,成等比数列求数列的通项公式;若为数列的前项和,且存在,使得成立,求实数的取值范围【答案】(1) (2) 【解析】试题分析:(1)由题意可得解得即可求得通项公式;(2),裂项相消求和 ,因为存在,使得成立,所以存在,使得成立,即存在,使得成立.求出的最大值即可解得的取值范围.试题解析:(1)由题意可得即又因为,所以所以.(2)因为,所以 .因为存在,使得成立,所以存在,

15、使得成立,即存在,使得成立.又(当且仅当时取等号).所以,即实数的取值范围是.21.在中,内角,所对的边分别为,且.(1)求角的大小;(2)若,求的面积.【答案】(1)(2)【解析】【分析】(1)由正弦定理以及两角差的余弦公式得到,由特殊角的三角函数值得到结果;(2)结合余弦定理和面积公式得到结果.【详解】(1)由正弦定理得,即,又,.(2).,.【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现 及

16、、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.22.已知等比数列的公比,前项和为,且满足.,分别是一个等差数列的第1项,第2项,第5项.(1)求数列的通项公式;(2)设,求数列的前项和;(3)若,的前项和为,且对任意的满足,求实数的取值范围.【答案】(1) . (2) ;(3) 【解析】【分析】(1)利用等比数列通项公式以及求和公式化简,得到,由,分别是一个等差数列的第1项,第2项,第5项,利用等差数列的定义可得,化简即可求出,从而得到数列的通项公式(2)由(1)可得,利用错位相减,求出数列的前项和即可;(3)结合(1)可得,利用裂项相消法,即可得到的前项和,求出的最大值,即可解得实数的取值范围【详解】(1)由得,所以,由,分别是一个等差数列的第1项,第2项,第5项,得,即,即,即,因为,所以,所以.(2)由于,所以,所以,两式相减得,所以(3)由知,解得或.即实数的取值范围是【点睛】本题考查等比数列通项公式与前项和,等差数列的定义,以及利用错位相减法和裂项相消法求数列的前项和,考查学生的计算能力,有一定综合性

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3