1、人教版九年级数学上册第二十二章二次函数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,抛物线yx2+7x与x轴交于点A,B,把抛物线在x轴及共上方的部分记作C1将C1向左平移得到C2,C2与
2、x轴交于点B,D,若直线yx+m与C1,C2共3个不同的交点,则m的取值范是()ABCD2、当0x3,函数yx2+4x+5的最大值与最小值分别是()A9,5B8,5C9,8D8,43、下列函数中,二次函数是()Ay4x+5Byx(2x3)Cyax2+bx+cD4、如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3),若抛物线y=ax2的图象与正方形有公共顶点,则实数a的取值范围是()ABCD5、如图,抛物线交轴于点,交轴于点若点坐标为,对称轴为直线,则下列结论错误的是()A二次函数的最大值为BCD6、向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹
3、在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A第秒B第秒C第秒D第秒7、已知函数ykx27x7的图象和x轴有交点,则k的取值范围是()ABC且k0D且k08、一次足球训练中,小明从球门正前方将球射向球门,球射向球门的路线呈抛物线,当球飞行的水平距离为时,球达到最高点,此时球离地面已知球门高是,若足球能射入球门,则小明与球门的距离可能是()ABCD9、若平面直角坐标系内的点 M 满足横、纵坐标都为整数,则把点 M 叫做“整点”例如:P(1,0)、Q(2,2)都是“整点”抛物线 y=mx22mx+m1(m0)与 x 轴交于 A、 B 两点,若该抛物线在 A、B 之间的部分与线
4、段 AB 所围成的区域(包括边界)恰有 6 个整点,则 m 的取值范围是()A m B m C m D m 0,即(-4)2-4k0,k4,故答案为k4.【考点】本题考查了抛物线与x轴的交点问题,由题意得出抛物线与x轴有两个交点是解题的关键.三、解答题1、(1),S的最大值为;(2)存在,m的值为或或或.【解析】【分析】(1)分、和三种情况分别表示出有关线段求得两个变量之间的函数关系即可(2)分两种情形:如图中,由题意点在上运动的时间与点在上运动的时间相等,即当时,当时,当时,分别构建方程求解即可如图中,作于首先证明,根据构建方程即可解决问题【详解】解:(1)如图中,当时,点与点都在上运动,此
5、时两平行线截平行四边形的面积为如图中,当时,点在上运动,点仍在上运动则,而,故此时两平行线截平行四边形的面积为:,如图中,当时,点和点都在上运动则,此时两平行线截平行四边形的面积为故关于的函数关系式为,当时,S随t增大而增大,当时,S随t增大而增大,当时,S随t增大而减小,当t=8时,S最大,代入可得S=;(2)如图中,由题意点在上运动的时间与点在上运动的时间相等,当时,则有,解得,当时,则有,解得,当时,则有,解得如图中,作于在RtCHR中,四边形是平行四边形,四边形是矩形,当时,则有,解得,综上所述,满足条件的m的值为或或或【考点】本题属于四边形综合题,考查了平行四边形的性质,多边形的面积
6、,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题2、 (1)(2),画图见解析(3)5,【解析】【分析】(1)连接AN,根据题意可知,利用勾股定理分别在、和中,用x、y表示出、和再在中,根据勾股定理即可列出关于x、y的等式,整理即可最后根据M从点B出发,运动到点C停止,即得出x的取值范围;(2)将将x=5代入(1)所求解析式,求出y的值,即为m的值;用描点法画图即可;(3)根据二次函数的性质即可解答(1)解:如图,连接AN,根据题意可知,在中,即,在中,即,在中,即,又AMMN,即在中,整理,得:M从点B出发,运动到点C停止
7、,即y与x的函数关系式为故答案为:;(2)解:将x=5代入,得:,对于,当x=0时,当时,描点法画出此抛物线如下:(3)解:,当时,y有最大值即当CN达到最大值时,BM的值是5,在整个运动过程中,点N运动的总路程是故答案为:5,【考点】本题考查矩形的性质,勾股定理,二次函数的图象和性质根据题意结合勾股定理得出关于x、y的等式是解题关键3、k=2【解析】【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a0)的函数,叫做二次函数可得k2-3k+4=2,且k-10,再解即可【详解】由题意得:k23k+4=2,且k10,解得:k=2;【考点】此题主要考查了二次函数定义,
8、关键是掌握判断函数是否是二次函数,要抓住二次项系数不为0和自变量指数为2这个关键条件4、; 有最大值; 存在满足条件的点,其坐标为或【解析】【分析】可设抛物线解析式为顶点式,由点坐标可求得抛物线的解析式,则可求得点坐标,利用待定系数法可求得直线解析式;设出点坐标,从而可表示出的长度,利用二次函数的性质可求得其最大值;过作轴,交于点,过和于,可设出点坐标,表示出的长度,由条件可证得为等腰直角三角形,则可得到关于点坐标的方程,可求得点坐标【详解】解:抛物线的顶点的坐标为,可设抛物线解析式为,点在该抛物线的图象上,解得,抛物线解析式为,即,点在轴上,令可得,点坐标为,可设直线解析式为,把点坐标代入可
9、得,解得,直线解析式为;设点横坐标为,则,当时,有最大值;如图,过作轴交于点,交轴于点,作于,设,则,是等腰直角三角形,当中边上的高为时,即,当时,方程无实数根,当时,解得或,或,综上可知存在满足条件的点,其坐标为或【考点】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识在中主要是待定系数法的考查,注意抛物线顶点式的应用,在中用点坐标表示出的长是解题的关键,在中构造等腰直角三角形求得的长是解题的关键本题考查知识点较多,综合性较强,难度适中5、(1)m=2,n=2;(2)一次函数的表达式为y=x+4【解析】【分析】(1)根据抛物线的对称轴可求得m的值
10、,把点P的横、纵坐标代入抛物线解析式,可求得n的值;(2)过点P作PCx轴于点C,过点B作BDx轴于D,利用相似三角形的对应边成比例,可求点B的坐标,进而用待定系数法求得一次函数的解析式【详解】解:(1)抛物线的对称轴是直线,=1,m=2二次函数y=x2+mx+n的图象经过点P(3,1),93m+n=1,得出n=3m8n=3m8=2(2)m=2,n=2,二次函数的解析式为y=x2+2x2过点P作PCx轴于点C,过点B作BDx轴于D,则PCBD,如图所示P(3,1),PC=1PA:PB=1:5,=BD=6点B的纵坐标为6把y=6代入y=x2+2x2得,6=x2+2x2解得x1=2,x2=4(舍去)B(2,6)一次函数的图象经过点P和点B,解得一次函数的表达式为y=x+4【考点】本题考查了一次函数、二次函数、相似三角形、待定系数法等知识点,构造相似三角形和待定系数法是解题的关键