ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:1.25MB ,
资源ID:22853      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-22853-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(上海市实验中学2019-2020学年高一数学下学期期中试题(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

上海市实验中学2019-2020学年高一数学下学期期中试题(含解析).doc

1、上海市实验中学2019-2020学年高一数学下学期期中试题(含解析)一填空题1._【答案】【解析】【分析】直接利用反三角函数的定义求值即可【详解】解:,故答案为:【点睛】本题主要考查反三角函数的求值问题,要注意反三角函数的值域,属于基础题2.已知一扇形的圆心角为1弧度,半径为1,则该扇形的面积为_.【答案】【解析】【分析】直接利用扇形面积公式计算得到答案.【详解】根据扇形的面积公式可得.故答案为:.【点睛】本题考查了扇形的面积,属于简单题.3.已知函数的图象关于直线对称,则的值是_【答案】.【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A0,0)

2、的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.4.已知,则_.【答案】【解析】【分析】直接根据正切函数的二倍角公式求解即可.【详解】解: 已知,所以故答案为: 【点睛】本题考查正切函数的二倍角公式,熟练掌握公式是解题的关键.5.在中的内角、所对的边、,则_【答案】 1【解析】【分析】根据正弦定理可得,结合余弦定理即可求解.【详解】,由正、余弦定理得 .故答案为.【点睛】本题主要考查了正弦定理,余弦定理,二倍角的正弦函数公式在解三角形中的应用,解答本题的关键是将角化边.6.记为等差数列的前项和,若,则数列的公差为_.【答案】【解析】【分析】利用等差数列的通项

3、公式及求和公式即可得出.【详解】解:设等差数列的公差为,则数列的公差.故答案为:1.【点睛】本题考查了等差数列的通项公式及求和公式,考查了推理能力与计算能力,属于基础题.7.若数列an的前n项和为Snan,则数列an的通项公式是an=_.【答案】;【解析】【详解】试题分析:解:当n=1时,a1=S1=a1+,解得a1=1,当n2时,an=Sn-Sn-1=()-()=-整理可得anan1,即=-2,故数列an是以1为首项,-2为公比的等比数列,故an=1(-2)n-1=(-2)n-1故答案为(-2)n-1考点:等比数列的通项公式8.在中,角,所对的边分别为,若的面积为,且,成等差数列,则最小值为

4、_【答案】4【解析】【分析】先根据,成等差数列得到,再根据余弦定理得到满足的等式关系,而由面积可得,利用基本不等式可求的最小值.【详解】因为,成等差数列,故.由余弦定理可得.由基本不等式可以得到,当且仅当时等号成立.因为,所以,所以即,当且仅当时等号成立.故填4.【点睛】三角形中与边有关的最值问题,可根据题设条件找到各边的等式关系或角的等量关系,再根据边的关系式的结构特征选用合适的基本不等式求最值,也可以利用正弦定理把与边有关的目标代数式转化为与角有关的三角函数式后再求其最值.9.设等比数列的公比为,其前项之积为,并且满足条件:,给出下列结论:;是数列中的最大项;使成立的最大自然数等于4031

5、;其中正确结论的序号为_.【答案】【解析】【分析】分别讨论和,找到矛盾,可判断,通过以及可得到,则通过可判断,通过时, 时,可判断,算出,可判断.【详解】解:,若,则,此时,与矛盾,故不成立,若,此时,与矛盾,故不成立,故正确;因为,由得,故不正确;因为,所以当时,当时,所以是数列中的最大项,故正确;,使成立的最大自然数等于4032,故不正确.故答案为:.【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题.10.已知正项数列中,若存在正实数,使得对数列中任意一项,也是数列中的一项,称数列为“倒置数列”,是它的“倒置系数”;若等比数列的项数

6、是,数列所有项之积是,则_(用和表示)【答案】【解析】【分析】由数列是项数为项的有穷正项等比数列,取,由“倒置数列”的定义可知,数列是“倒置数列”,再由等比数列的性质即可求得数列所有项之积是.【详解】解:数列是项数为的有穷正项等比数列,取,对数列中的任意一项,也是数列中的一项,由“倒置数列”的定义可知,数列是“倒置数列”,又数列所有项之积是,则.故答案为:.【点睛】本题是新定义题,考查等比数列的性质,正确找出数列的一个“倒置系数”是解答该题的关键,是中档题.二选择题11.已知(),则( )A. B. C. D. 【答案】B【解析】【分析】先计算出,再求得解.【详解】由题得,所以.故选B【点睛】

7、本题主要考查数学归纳法,意在考查学生对该知识的理解掌握水平.12.下列等式中正确的是( )A. B. C. D. 【答案】C【解析】【分析】利用反三角函数对每一个选项逐一分析判断得解.【详解】选项A,中x,而是错误的,所以该选项错误;选项B, ,所以该选项是错误的;选项C,,所以该选项是正确的;选项D, ,反正切函数是定义域上的单调函数,所以该选项是错误的.故选C【点睛】本题主要考查反三角函数,意在考查学生对该知识的理解掌握水平,属于基础题.13.已知函数的部分图象如图所示,则下列判断正确的是()A. 函数的图象关于点对称B. 函数的图象关于直线对称C. 函数的最小正周期为D. 当时,函数的图

8、象与直线围成的封闭图形面积为【答案】D【解析】【分析】由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,可得f(x)的解析式,再根据余弦函数的图象和性质,判断各个选项是否正确,从而得出结论【详解】解:函数的部分图象,可得A2,2再根据五点法作图可得2,f(x)2sin(2x)令x,求得f(x)2,为函数的最小值,故A错误;令x,求得f(x)1,不是函数的最值,故B错误;函数f(2x)2sin(4x)的最小正周期为,故C错误;当时,2x,函数f(x)的图象与直线y2围成的封闭图形为x、x、y2、y2构成的矩形的面积的一半,矩形的面积为(2+2)4,故函数f(x)的图象与直线y2围成

9、的封闭图形面积为2,故D正确,故选D【点睛】本题主要考查由函数y=Asin(x+)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,余弦函数的图象和性质,属于中档题14.已知. 将四个数按照一定顺序排列成一个数列,则( )A. 当时,存在满足已知条件的,四个数构成等比数列B. 当时,存在满足已知条件的,四个数构成等差数列C. 当时,存在满足已知条件的,四个数构成等比数列D. 当时,存在满足已知条件的,四个数构成等差数列【答案】D【解析】【分析】注意到时,符合题目的要求,由此得出正确选项.【详解】注意到时,且的值为,构成公差为的等差数列.由此判断出D选项正确.故

10、选D.【点睛】本小题主要考查等比数列、等差数列的定义,考查分析求解能力,属于基础题.三解答题15.已知函数,(1)求函数的最小正周期;(2)当时,求函数的最大值与最小值【答案】(1);(2)最大值,最小值【解析】分析】(1)利用三角恒等变换化简函数的解析式,再根据正弦函数的周期性得出结论(2)利用正弦函数的定义域和值域,求得函数在区间上的值域【详解】解:(1)函数,故它的最小正周期;(2)在区间上,故当时,取得最小值为,取得最小值为;当时,取得最大值为1,取得最大值为,故函数在区间上的最大值,最小值【点睛】本题主要考查三角恒等变换,正弦函数的周期性、正弦函数的定义域和值域,属于中档题16.已知

11、数列是等差数列,公差,且是等比数列;()求;()求数列的前项和【答案】();()【解析】【分析】()根据等比数列性质,结合等差数列的通项公式进行求解即可;()根据的正负性,结合等差数列的前项和公式进行求解即可.【详解】()由题意:是等比数列,所以有 解得:或0(舍去),所以;()当时,即有;当时,即有【点睛】本题考查了等比数列的性质,考查了求等差数列的通项公式,考查了等差数列的前项和公式的应用,考查了数学运算能力17.已知数列是各项均为正数的等比数列,数列为等差数列,且,.(1)求数列与的通项公式;(2)求数列的前项和;(3)设为数列的前项和,若对于任意,有,求实数的值.【答案】(1),(2)

12、(3)【解析】【分析】(1)假设公差,公比,根据等差数列和等比数列的通项公式,化简式子,可得,然后利用公式法,可得结果.(2)根据(1)的结论,利用错位相减法求和,可得结果.(3)计算出,代值计算并化简,可得结果.【详解】解:(1)依题意:,即,解得:所以,(2),上面两式相减,得:则即所以,(3),所以由得,即【点睛】本题主要考查等差数列和等比数列的综合应用,以及利用错位相减法求和,属基础题.18.已知数列的各项均为正数,其前项和为,且满足,(1)求、的值;(2)求数列的通项公式;(3)证明:对一切正整数,有【答案】(1),;(2);(3)证明详见解析【解析】【分析】(1)由得,解得,同理可

13、得;(2)当时,可得,化简构造数列为常数数列,求出的通项公式;(3)当时,利用放缩法证明不等式.【详解】(1)由得,又,所以;当时,得,解得;(2),当时,所以,化简得:,所以,即,又,所以,故数列为常数数列,所以,得;(3),当时,数列为等差数列,所以,当时,原不等式成立,当时,所以,原不等式成立,综上,对一切正整数,有【点睛】本题主要考查了等差与等比数列的综合应用,考查了利用放缩法证明数列不等式,考查了学生的逻辑推理与运算求解能力.四附加题19.已知函数,()(1)试讨论并直接写出的单调性;(2)试求的最小值【答案】(1)增区间:;减区间:,;(2)【解析】【分析】(1)根据辅助角公式可得

14、,结合正弦函数的单调性即可得结果;(2)根据(1)中的结论可得分子在处取得最小值2,分母取得最大值,进而可得结果.【详解】(1),令,解得,令,解得即的增区间为,减区间:,(2)由(1)可得在单调递增,在单调递减,当时,;当时,即和处同时取得最小值2,即在上恒成立,而在处取得最大值,所以当时,有最小值.【点睛】本题主要考查了三角函数式的化简,正弦型函数的单调性,以及函数最值的求法,属于中档题.20.设数列的前项和满足:,(1)令,求证:数列为等比数列;(2)求【答案】(1)证明详见解析;(2)【解析】【分析】(1)数列满足关系式,时,相减可得与的关系,代入消去可得,即可证明(2)由(1)可得,可得,带入 可得结果.【详解】(1)证明:数列满足关系式,则时,可得:,则,又时,解得,数列为等比数列,首项为,公比为;(2)解:由(1)可得:【点睛】本题考查了等比数列的通项公式、数列递推关系证明等比数列,考查了推理能力与计算能力,属于中档题

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3