ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:90.50KB ,
资源ID:228424      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-228424-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年数学人教A版必修4教学教案:2-4-1 平面向量数量积的物理背景及其含义 (8) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年数学人教A版必修4教学教案:2-4-1 平面向量数量积的物理背景及其含义 (8) WORD版含答案.doc

1、2.4 平面向量的数量积 2.4.1 平面向量数量积的物理背景及其含义一、教学分析前面已经知道,向量的线性运算有非常明确的几何意义,因此利用向量运算可以讨论一些几何元素的位置关系.既然向量可以进行加减运算,一个自然的想法是两个向量能否做乘法运算呢?如果能,运算结果应该是什么呢?另外,距离和角是刻画几何元素(点、线、面)之间度量关系的基本量.我们需要一个向量运算来反映向量的长度和两个向量间夹角的关系.众所周知,向量概念的引入与物理学的研究密切相关,物理学家很早就知道,如果一个物体在力F的作用下产生位移s(如图1),那么力F所做的功W=|F|s|cos功W是一个数量,其中既涉及“长度”,也涉及“角

2、”,而且只与向量F,s有关.熟悉的数的运算启发我们把上式解释为两个向量的运算,从而引进向量的数量积的定义ab=|a|b|cos.这是一个好定义,它不仅满足人们熟悉的运算律(如交换律、分配律等),而且还可以用它来更加简洁地表述几何中的许多结果.向量的数量积是一种新的向量运算,与向量的加法、减法、数乘运算一样,它也有明显的物理意义、几何意义.但与向量的线性运算不同的是,它的运算结果不是向量而是数量.二、教学目标1、知识与技能:掌握平面向量的数量积及其几何意义;掌握平面向量数量积的重要性质及运算律;了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;掌握向量垂直的条件。2、过程与方法:通过物理

3、中“功”等实例,理解平面向量数量积的含义及其物理意义;体会平面向量的数量积与向量投影的关系。3、情感态度与价值观:通过与物理中“功”的类比抽象出向量的数量积,培养学生的抽象概括能力。三、重点难点教学重点:平面向量数量积的定义.教学难点:平面向量数量积的定义及其运算律的理解和平面向量数量积的应用.四、教学设想(一)导入新课思路1.我们前面知道向量概念的原型就是物理中的力、速度、位移以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答更简捷、更清晰,并且向量知识不仅是解决物理许多问题的有利工具,而且用数学

4、的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来研究.在物理课中,我们学过功的概念,即如果一个物体在力F的作用下产生位移s,那么力F所做的功W可由下式计算:W=|F|s|cos其中是F与s的夹角.我们知道力和位移都是向量,而功是一个标量(数量).故从力所做的功出发,我们就顺其自然地引入向量数量积的概念.思路2.前面我们已学过,任意的两个向量都可以进行加减运算,并且两个向量的和与差仍是一个向量.我们结合任意的两个实数之间可以进行加减乘除(除数不为零)运算,就自然地会想到,任意的两个向量是

5、否可以进行乘法运算呢?如果能,其运算结果是什么呢?(二)推进新课、新知探究、提出问题ab的运算结果是向量还是数量?它的名称是什么?由所学知识可以知道,任何一种运算都有其相应的运算律,数量积是一种向量的乘法运算,它是否满足实数的乘法运算律?我们知道,对任意a,bR,恒有(a+b)2=a2+2ab+b2,(a+b)(a-b)=a2-b2.对任意向量a、b,是否也有下面类似的结论?(1)(a+b)2=a2+2ab+b2;(2)(a+b)(a-b)=a2-b2.活动:已知两个非零向量a与b,我们把数量|a|b|cos叫做a与b的数量积(或内积),记作ab,即ab=|a|b|cos(0).其中是a与b的

6、夹角,|a|cos(|b|cos)叫做向量a在b方向上(b在a方向上)的投影.如图2为两向量数量积的关系,并且可以知道向量夹角的范围是0180.图2在教师与学生一起探究的活动中,应特别点拨引导学生注意:(1)两个非零向量的数量积是个数量,而不是向量,它的值为两向量的模与两向量夹角的余弦的乘积;(2)零向量与任一向量的数量积为0,即a0=0;(3)符号“”在向量运算中不是乘号,既不能省略,也不能用“”代替;(4)当00,从而ab0;当时,cos0,从而ab0.与学生共同探究并证明数量积的运算律.已知a,b,c和实数,则向量的数量积满足下列运算律:ab=ba(交换律);(a)b=(ab)=a(b)

7、(数乘结合律);(a+b)c=ac+bc(分配律).特别是:(1)当a0时,由ab=0不能推出b一定是零向量.这是因为任一与a垂直的非零向量b,都有ab=0.图3(2)已知实数a、b、c(b0),则ab=bca=c.但对向量的数量积,该推理不正确,即ab=bc不能推出a=c.由图3很容易看出,虽然ab=bc,但ac.(3)对于实数a、b、c有(ab)c=a(bc);但对于向量a、b、c,(ab)c=a(bc)不成立.这是因为(ab)c表示一个与c共线的向量,而a(bc)表示一个与a共线的向量,而c与a不一定共线,所以(ab)c=a(bc)不成立.讨论结果:是数量,叫数量积.数量积满足ab=ba

8、(交换律);(a)b=(ab)=a(b)(数乘结合律);(a+b)c=ac+bc(分配律).(1)(a+b)2=(a+b)(a+b)=ab+ab+ba+bb=a2+2ab+b2;(2)(a+b)(a-b)=aa-ab+ba-bb=a2-b2.提出问题如何理解向量的投影与数量积?它们与向量之间有什么关系?能用“投影”来解释数量积的几何意义吗?定义:|b|cos叫做向量b在a方向上的投影.并引导学生思考:1投影也是一个数量,不是向量;2当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当=0时投影为|b|;当=180时投影为-|b|.教师结合学生对“投影”的理解,让学生总结出向量的数

9、量积的几何意义:数量积ab等于a的长度与b在a方向上投影|b|cos的乘积.让学生思考:这个投影值可正、可负,也可为零,所以我们说向量的数量积的结果是一个实数.教师和学生共同总结两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1ea=ae=|a|cos.2abab=0.3当a与b同向时,ab=|a|b|;当a与b反向时,ab=-|a|b|.特别地aa=|a|2或|a|=.4cos=.5|ab|a|b|.上述性质要求学生结合数量积的定义自己尝试推证,教师给予必要的补充和提示,在推导过程中理解并记忆这些性质.向量的数量积的几何意义为数量积ab等于a的长度与b在a方向上投影|

10、b|cos的乘积.(三)应用示例例1 (1) 已知向量a与b的夹角为120,且|a|4,|b|2,求:ab; (ab)(a2b)(2)如图,设正三角形ABC的边长为,AB的模c,BC的模a,CA的模b,求abbcca. 例2 (1)已知a,b为单位向量,其夹角为60,则(2ab)b ()A1B0C1 D2(2)已知正方形ABCD的边长为2,分别求:(五)课堂小结1.先由学生回顾本节学习的数学知识,数量积的定义、几何意义,数量积的重要性质,数量积的运算律.2.教师与学生总结本节学习的数学方法,归纳类比、定义法、数形结合等.在领悟数学思想方法的同时,鼓励学生多角度、发散性地思考问题,并鼓励学生进行一题多解.(六)作业

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3