ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:367.52KB ,
资源ID:226734      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-226734-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《新步步高》2017版高考数学江苏(理)考前三个月配套文档 专题10 数学思想 第2讲 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《新步步高》2017版高考数学江苏(理)考前三个月配套文档 专题10 数学思想 第2讲 WORD版含解析.docx

1、第2讲数形结合思想思想方法解读数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻画与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决数形结合的思想,其实质是

2、将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围数学中的知识,有的本身就可以看作是数形的结合如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的 体验高考1(2015北京改编)如图,函数f(x)的图象为折线ACB,则不等式f(

3、x)log2(x1)的解集是_答案x|1x1解析令g(x)ylog2(x1),作出函数g(x)的图象如图. 由得结合图象知不等式f(x)log2(x1)的解集为x|10时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是_答案(,1)(0,1)解析因为f(x)(xR)为奇函数,f(1)0,所以f(1)f(1)0.当x0时,令g(x),则g(x)为偶函数,且g(1)g(1)0.则当x0时,g(x)0,故g(x)在(0,)上为减函数,在(,0)上为增函数所以在(0,)上,当0x1时,g(x)g(1)00f(x)0;在(,0)上,当x1时,g(x)g(1)00f(x)0.综上,得使f(x)

4、0成立的x的取值范围是(,1)(0,1)3(2015重庆)若函数f(x)|x1|2|xa|的最小值为5,则实数a_.答案4或6解析由于f(x)|x1|2|xa|,当a1时,f(x)作出f(x)的大致图象如图所示,由函数f(x)的图象可知f(a)5,即a15,a4.同理,当a1时,a15,a6.高考必会题型题型一数形结合在方程根的个数中的应用例1方程sin x的解的个数是_答案7解析在同一平面直角坐标系中画出y1sin x和y2的图象如图观察图象可知y1sin x和y2的图象在第一象限有3个交点,根据对称性可知,在第三象限也有3个交点,再加上原点,共7个交点,所以方程sin x有7个解点评利用数

5、形结合求方程解应注意两点(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性,否则会得到错解(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合变式训练1若函数f(x)有且只有两个不同的零点,则实数k的取值范围是_答案(,0解析当x0时,f(x)ln x与x轴有一个交点,即f(x)有一个零点依题意,显然当x0时,f(x)kx2也有一个零点,即方程kx20只能有一个解令h(x),g(x)kx2,则两函数图象在x0时只能有一个交点若k0,显然函数h(x)与g(x)kx2

6、在x0时有两个交点,即点A与原点O(如图所示)显然k0不符合题意若k0,显然函数h(x)与g(x)kx2在x0时只有一个交点,即原点O(如图所示)若k0,显然函数h(x)与g(x)kx2在x0时只有一个交点,即原点O.综上,所求实数k的取值范围是(,0题型二利用数形结合解决不等式函数问题例2已知函数f(x)若关于x的方程f(x)k有两个不等的实根,则实数k的取值范围是_答案(0,1)解析当x2时,f(x),此时f(x)在2,)上单调递减,且0f(x)1.当x2时,f(x)(x1)3,此时f(x)过点(1,0),(0,1),且在(,2)上单调递增当x2时,f(x)1.如图所示作出函数yf(x)的

7、图象,由图可得f(x)在(,2)上单调递增且f(x)1,f(x)在2,)上单调递减且0f(x)1,故当且仅当0k1时,关于x的方程f(x)k有两个不等的实根,即实数k的取值范围是(0,1)点评利用数形结合解不等式或求参数的方法求参数范围或解不等式问题经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,把两个函数图象的上、下位置关系转化为数量关系来解决问题,往往可以避免烦琐的运算,获得简捷的解答变式训练2若存在正数x使2x(xa)0,所以由2x(xa)1得xa0时的图象,如图当x0时,g(x)2x0,使2x(xa)1,则有f(0)1,即a1.题型三利用数形结合求最值例3已知a

8、,b是平面内两个互相垂直的单位向量,若向量c满足(ac)(bc)0,则|c|的最大值是_答案解析如图,设Oa,Ob,Oc,则Cac,Cbc.由题意知CC,O、A、C、B四点共圆当OC为圆的直径时,|c|最大,此时,|O|.点评利用数形结合求最值的方法步骤第一步:分析数理特征,确定目标问题的几何意义一般从图形结构、图形的几何意义分析代数式是否具有几何意义第二步:转化为几何问题第三步:解决几何问题第四步:回归代数问题第五步:回顾反思应用几何意义数形结合法解决问题需要熟悉常见的几何结构的代数形式,主要有:(1)比值可考虑直线的斜率;(2)二元一次式可考虑直线的截距;(3)根式分式可考虑点到直线的距离

9、;(4)根式可考虑两点间的距离变式训练3已知圆C:(x3)2(y4)21和两点A(m,0),B(m,0)(m0),若圆C上存在点P,使得APB90,则m的最大值为_答案6解析根据题意,画出示意图,如图所示,则圆心C的坐标为(3,4),半径r1,且AB2m.因为APB90,连结OP,易知OPABm.要求m的最大值,即求圆C上的点P到原点O的最大距离因为OC5,所以OPmaxOCr6,即m的最大值为6.高考题型精练1若过点A(4,0)的直线l与曲线(x2)2y21有公共点,则直线l的斜率的取值范围是_答案,解析设直线方程为yk(x4),即kxy4k0,若直线l与曲线(x2)2y21有公共点,则圆心

10、到直线的距离小于等于半径,即d1,得4k2k21,k2.所以k.2已知点P(x,y)的坐标x,y满足则x2y26x9的取值范围是_答案2,16解析画出可行域如图,所求的x2y26x9(x3)2y2是点Q(3,0)到可行域上的点的距离的平方,由图形知最小值为Q到射线xy10(x0)的距离d的平方,最大值为QA216.d222.取值范围是2,163已知函数f(x)满足下列关系:f(x1)f(x1);当x1,1时,f(x)x2,则方程f(x)lg x的解的个数是_答案9解析由题意可知,f(x)是以2为周期,值域为0,1的函数方程f(x)lg x的解的个数即为函数f(x)的图象与函数g(x)lg x的

11、图象的交点个数画出两函数图象,由图象可知共9个交点4设函数f(x)是定义在R上的偶函数,对任意xR,都有f(x)f(x4),且当x2,0时,f(x)()x1,若在区间(2,6内关于x的方程f(x)loga(x2)0(a1)恰有三个不同的实数根,则a的取值范围是_答案(,2)解析作出f(x)在区间(2,6上的图象,可知loga(22)3a2.5已知函数f(x)|4xx2|a,当函数有4个零点时,则a的取值范围是_答案(0,4)解析函数f(x)|4xx2|a有4个零点,方程|4xx2|a有4个不同的解令g(x)|4xx2|作出g(x)的图象,如图,由图象可以看出,当h(x)a与g(x)有4个交点时

12、,0a4,a的取值范围为(0,4)6若方程xk有且只有一个解,则k的取值范围是_答案k|k或1k1)解析令y1xk,y2,则x2y1(y0)作出图象如图,在y1xk中,k是直线的纵截距,由图知:方程有一个解直线与上述半圆只有一个公共点k或1k1.7设f(x)|lg(x1)|,若0a2(由于a4.8已知函数y的图象与函数ykx2的图象恰有两个交点,则实数k的取值范围是_答案(0,1)(1,4)解析根据绝对值的意义,y在直角坐标系中作出该函数的图象,如图中实线所示根据图象可知,当0k1或1k4时有两个交点9已知实数x,y满足则的最大值为_答案2解析画出不等式组对应的平面区域为图中的四边形ABCD(

13、含边界),表示平面区域上的点P(x,y)与原点的连线的斜率,显然OA的斜率最大,且A(1,2),kOA2.10给出下列命题:在区间(0,)上,函数yx1,yx,y(x1)2,yx3中有三个是增函数;若logm3logn30,则0nm1;若函数f(x)是奇函数,则f(x1)的图象关于点(1,0)对称;若函数f(x)3x2x3,则方程f(x)0有两个实数根,其中正确的命题是_答案解析对于,在区间(0,)上,只有yx,yx3是增函数,所以错误对于,由logm3logn30,可得0,即log3nlog3m0,所以0nm1,所以正确易知正确对于,方程f(x)0即为3x2x30,变形得3x2x3,令y13x,y22x3,在同一坐标系中作出这两个函数的图象,如图由图象可知,两个函数图象有两个交点,即方程3x2x30有两个实数根,所以正确

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3