ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:73KB ,
资源ID:2254876      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-2254876-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018届高三数学第21练利用导数研究不等式问题练习.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018届高三数学第21练利用导数研究不等式问题练习.doc

1、第21练 利用导数研究不等式问题训练目标(1)利用导数处理与不等式有关的题型;(2)解题步骤的规范训练训练题型(1)利用导数证明不等式;(2)利用导数解决不等式恒成立问题及存在性问题;(3)利用导数证明与数列有关的不等式解题策略(1)构造与所证不等式相关的函数;(2)利用导数求出函数的单调性或者最值再证明不等式;(3)处理恒成立问题注意参变量分离.1.已知函数f(x)x2axalnx(aR)(1)若函数f(x)在x1处取得极值,求a的值;(2)在(1)的条件下,求证:f(x)4x.2(2016烟台模拟)已知函数f(x)x2ax,g(x)lnx,h(x)f(x)g(x)(1)若函数yh(x)的单

2、调减区间是,求实数a的值;(2)若f(x)g(x)对于定义域内的任意x恒成立,求实数a的取值范围3(2016山西四校联考)已知f(x)lnxxa1.(1)若存在x(0,),使得f(x)0成立,求a的取值范围;(2)求证:在(1)的条件下,当x1时,x2axaxlnx成立4.已知函数f(x)(2a)lnx2ax.(1)当a|f(x1)f(x2)|成立,求实数m的取值范围5(2017福州质检)设函数f(x)exax1.(1)当a0时,设函数f(x)的最小值为g(a),求证:g(a)0;(2)求证:对任意的正整数n,都有1n12n13n1nn10),可知g(x)在(0,1)上是减函数,在(1,)上是

3、增函数,所以g(x)g(1)0,所以f(x)4x成立2解(1)由题意可知,h(x)x2axlnx(x0),由h(x)(x0),若h(x)的单调减区间是,由h(1)h0,解得a3,而当a3时,h(x)(x0)由h(x)0),ax(x0)令(x)x(x0),则(x),yx2lnx1在(0,)上是增函数,且x1时,y0.当x(0,1)时,(x)0,即(x)在(0,1)上是减函数,在(1,)上是增函数,(x)min(1)1,故a1.即实数a的取值范围为(,13(1)解原题即为存在x0,使得lnxxa10,alnxx1,令g(x)lnxx1,则g(x)1.令g(x)0,解得x1.当0x1时,g(x)1时

4、,g(x)0,g(x)为增函数,g(x)ming(1)0,ag(1)0.故a的取值范围是0,)(2)证明原不等式可化为x2axxlnxa0(x1,a0)令G(x)x2axxlnxa,则G(1)0.由(1)可知xlnx10,则G(x)xalnx1xlnx10,G(x)在(1,)上单调递增,G(x)G(1)0成立,x2axxlnxa0成立,即x2axaxlnx成立4解(1)求导可得f(x)2a,令f(x)0,得x1,x2,当a2时,f(x)0,函数f(x)在定义域(0,)内单调递减;当2a0时,在区间(0,),(,)上f(x)0,f(x)单调递增;当a2时,在区间(0,),(,)上f(x)0,f(

5、x)单调递增(2)由(1)知当a(3,2)时,函数f(x)在区间1,3上单调递减,所以当x1,3时,f(x)maxf(1)12a,f(x)minf(3)(2a)ln 36a.问题等价于:对任意的a(3,2),恒有(mln 3)a2ln 312a(2a)ln 36a成立,即am4a,因为a0,所以m0及f(x)exa可得,函数f(x)在(,lna)上单调递减,在(lna,)上单调递增,故函数f(x)的最小值为g(a)f(lna)elnaalna1aalna1,则g(a)lna,故当a(0,1)时,g(a)0;当a(1,)时,g(a)0时,总有exx1.于是,可得(x1)n1(ex)n1e(n1)x.令x1,即x,可得n1en;令x1,即x,可得n1e(n1);令x1,即x,可得n1e(n2);令x1,即x,可得n1e1.对以上各式求和可得:n1n1n1n1ene(n1)e(n2)e11.故对任意的正整数n,都有1n12n13n1nn1(n1)n1.6

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3