ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:792.50KB ,
资源ID:220589      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-220589-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教版高中数学复习学(教)案(第63讲)排列与组合的基本问题.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

人教版高中数学复习学(教)案(第63讲)排列与组合的基本问题.doc

1、题目 第十章排列、组台、二项式定理排列与组合的基本问题高考要求 1理解排列的意义 掌握排列数计算公式,并能用它解决一些简单的应用问题 2理解组合的意义,掌握组合数计算公式和组合数的性质并能用它们解决一些简单的应用问题知识点归纳 1排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列2排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示3排列数公式:()4阶乘:表示正整数1到的连乘积,叫做的阶乘规定5排列数的另一个计算公式:= 6组合的概念:一般地,从个不同元素中取出个

2、元素并成一组,叫做从个不同元素中取出个元素的一个组合7组合数的概念:从个不同元素中取出个元素的所有组合的个数,叫做从 个不同元素中取出个元素的组合数用符号表示8组合数公式:或9 组合数的性质1:规定:; 10组合数的性质2:+ 题型讲解 例1 分别求出符合下列要求的不同排法的种数(1)6名学生排3排,前排1人,中排2人,后排3人;(2)6名学生排成一排,甲不在排头也不在排尾;(3)从6名运动员中选出4人参加4100米接力赛,甲不跑第一棒,乙不跑第四棒;(4)6人排成一排,甲、乙必须相邻;(5)6人排成一排,甲、乙不相邻;(6)6人排成一排,限定甲要排在乙的左边,乙要排在丙的左边(甲、乙、丙可以

3、不相邻)解:(1)分排坐法与直排坐法一一对应,故排法种数为(2)甲不能排头尾,让受特殊限制的甲先选位置,有种选法,然后其他5人选,有种选法,故排法种数为(3)有两棒受限制,以第一棒的人选来分类:乙跑第一棒,其余棒次则不受限制,排法数为;乙不跑第一棒,则跑第一棒的人有种选法,第四棒除了乙和第一棒选定的人外,也有种选法,其余两棒次不受限制,故有种排法,由分类计数原理,共有种排法 (4)将甲乙“捆绑”成“一个元”与其他4人一起作全排列共有种排法 (5)甲乙不相邻,第一步除甲乙外的其余4人先排好;第二步,甲、乙选择已排好的4人的左、右及之间的空挡插位,共有(或用6人的排列数减去问题(2)后排列数为)

4、(6)三人的顺序定,实质是从6个位置中选出三个位置,然后排按规定的顺序放置这三人,其余3人在3个位置上全排列,故有排法种点评:排队问题是一类典型的排列问题,常见的附加条件是定位与限位、相邻与不相邻例2 假设在100件产品中有3件是次品,从中任意抽取5件,求下列抽取方法各多少种?(1)没有次品;(2)恰有两件是次品;(3)至少有两件是次品解:(1)没有次品的抽法就是从97件正品中抽取5件的抽法,共有种(2)恰有2件是次品的抽法就是从97件正品中抽取3件,并从3件次品中抽2件的抽法,共有种(3)至少有2件次品的抽法,按次品件数来分有二类:第一类,从97件正品中抽取3件,并从3件次品中抽取2件,有种

5、第二类从97件正品中抽取2件,并将3件次品全部抽取,有种按分类计数原理有种点评:此题是只选“元”而不排“序”的典型的组合问题,附加的条件是从不同种类的元素中抽取,应当注意:如果第(3)题采用先从3件次品抽取2件(以保证至少有2件是次品),再从余下的98件产品中任意抽取3件的抽法,那么所得结果是种,其结论是错误的,错在“重复”:假设3件次品是A、B、C,第一步先抽A、B第二步再抽C和其余2件正品,与第一步先抽A、C(或B、C),第二步再抽B(或A)和其余2件正品是同一种抽法,但在算式中算作3种不同抽法例3 求证:;证明:利用排列数公式左 右另一种证法:(利用排列的定义理解)从n个元素中取m个元素

6、排列可以分成两类:第一类不含某特殊元素的排列有第二类含元素的排列则先从个元素中取出个元素排列有种,然后将插入,共有m个空档,故有种,因此利用组合数公式左右另法:利用公式推得左右点评:证明排列、组合恒等式通常利用排列数、组合数公式及组合数基本性质例4 已知是集合到集合的映射(1)不同的映射有多少个?(2)若要求则不同的映射有多少个?分析:(1)确定一个映射,需要确定的像(2)的象元之和为4,则加数可能出现多种情况,即4有多种分析方案,各方案独立且并列需要分类计算解:(1)A中每个元都可选0,1,2三者之一为像,由分步计数原理,共有个不同映射 (2)根据对应的像为2的个数来分类,可分为三类:第一类

7、:没有元素的像为2,其和又为4,必然其像均为1,这样的映射只有一个;第二类:一个元素的像是2,其余三个元素的像必为0,1,1,这样的映射有个;第三类:二个元素的像是2,另两个元素的像必为0,这样的映射有个由分类计数原理共有1+12+6=19(个)点评:问题(1)可套用投信模型:n封不同的信投入m个不同的信箱,有种方法;问题(2)的关键结合映射概念恰当确定分类标准,做到不重、不漏例5 四面体的顶点和各棱的中点共10个点(1)设一个顶点为A,从其他9点中取3个点,使它们和点A在同一平面上,不同的取法有多少种?(2)在这10点中取4个不共面的点,不同的取法有多少种?解:(1)如图,含顶点A的四面体的

8、三个面上,除点A外都有5个点,从中取出3点必与点A共面,共有种取法含顶点A的棱有三条,每条棱上有3个点,它们与所对棱的中点共面,共有3种取法根据分类计数原理和点A共面三点取法共有种(2)取出的4点不共面比取出的4点共面的情形要复杂,故采用间接法:先不加限制任取4点(种取法)减去4点共面的取法取出的4点共面有三类:第一类:从四面体的同一个面上的6点取出4点共面,有种取法第二类:每条棱上的3个点与所对棱的中点共面,有6种取法第三类:从6条棱的中点取4个点共面,有3种取法根据分类计数原理4点共面取法共有故取4个点不共面的不同取法有(种)点评:由点构成直线、平面、几何体等图形是一类典型的组合问题,附加

9、的条件是点共线与不共线,点共面与不共面,线共面与不共面等小结 :个不同的元素必须相邻,有 种“捆绑”方法个不同元素互不相邻,分别“插入”到个“间隙”中的个位置有 种不同的“插入”方法个相同的元素互不相邻,分别“插入”到个“间隙”中的个位置,有 种不同的“插入”方法若干个不同的元素“等分”为 个组,要将选取出每一个组的组合数的乘积除以 学生练习 1五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(B)A种 B种 C种 D种2在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有 192 个3有12个座位

10、,现安排2人就座并且这2人不左右相邻,那么不同排法的种数是_110_4某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连,不管人的顺序),而二班的2位同学没有被排在一起的概率为: ( D ) A B C D5用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有 576 个 6把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么

11、不同的分法种数( D )A168B96C72D1447将标号为1,2,10的10个球放入标号为1,2,10的10个盒子里,每个盒内放一个球,恰好3个球的标号与其在盒子的标号不一致的放入方法种数为( B )A120B240C360D7208从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任), 要求这3位班主任中男、女教师都要有,则不同的选派方案共( B )种A210种B420种C630种D840 9从集合 P,Q,R,S与0,1,2,3,4,5,6,7,8,9中各任选2个元素排成一排(字母和数字均不能重复)每排中字母Q和数字0至多只能出现一个的不同排法种数是_5832

12、_(用数字作答)10从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有( B )A300种B240种C144种D96种题示:11四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打算用编号为、的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为 ( B)A96 B48 C24 D012 4棵柳树和4棵杨树栽成一行,柳树、杨树逐一相间的栽法有_种解析:2AA=1152种答案:11521

13、3某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2菜2素共4种不同的品种现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需要不同的素菜品种_种(结果用数值表示)解析:设素菜n种,则CC200n(n1)40,所以n的最小值为7答案:714设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子现将这五个球投放入这五个盒子内,要求每个盒子内投放一球,并且恰好有两个球的编号与盒子的编号相同,则这样的投放方法有多少种?分析:五个球分别投放到五个盒子内,恰好有两个球的编号与盒子的编号相同,则其他三个球必不能投放到与球的编号相同的盒子内,此时,这三个

14、球与对应的三个盒子,就成了受限的特殊元素与特殊位置解:先在五个球中任选两个球投放到与球编号相同的盒子内,有C种;剩下的三个球,不失一般性,不妨设编号为3,4,5,投放3号球的方法数为C,则投放4,5号球的方法只有一种,根据分步计数原理共有CC=20种点评:本题投放球有两种方法,一种是投入到与编号相同的盒子内,另一种是投入到与编号不同的盒子内,故应分步完成15 球台上有4个黄球,6个红球,击黄球入袋记2分,击红球入袋记1分,欲将此十球中的4球击入袋中,但总分不低于5分,击球方法有几种?解:设击入黄球x个,红球y个符合要求,则有 x+y=4,2x+y5(x、yN),得1x4相应每组解(x,y),击

15、球方法数分别为CC,CC,CC,CC共有不同击球方法数为CC+CC+CC+CC=195课前后备注 1从1、2、3、4、20中任选3个不同的数,使这三个数成等差数列,这样的等差数列最多有( )(A) 90个 (B)180个 (C)200个 (D)120个2男女学生共有8 人,从男生中选取2人,且从女生中选取1人,共有30种不同的选法,其中女生有( )(A) 2人或3人 (B)3人或4人 (C)3人 (D)4人3从编号分别为1,2,3,4,5,6,7,8,9,10,11的11个球中,取出5个小球,使这5个小球的编号之和为奇数,其方法总数为( )(A)200 (B)230 (C)236 (D)206

16、4兰州某车队有装有A,B,C,D,E,F六种货物的卡车各一辆,把这些货物运到西安,要求装A种货物,B种货物与E种货物的车,到达西安的顺序必须是A,B,E(可以不相邻,且先发的车先到),则这六辆车发车的顺序有几种不同的方案( ) (A)80 (B)120 (C)240 (D)3605用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数的个数是( )(A)48 (B)36 (C)28 (D)126某药品研究所研制了5种消炎药4种退烧药现从中取出两种消炎药和一种退烧药同时使用进行疗效实验,但又知两种药必须同时使用,且两种药不能同时使用,则不同的实验方案有(

17、)(A)27种 (B)26种 (C)16种 (D)14种7某池塘有A,B,C三只小船,A船可乘3人,B船可乘2 人,C船可乘1 人,今天3个成人和2 个儿童分乘这些船只,为安全起见,儿童必须由成人陪同方能乘船,他们分乘这些船只的方法共有( )(A) 120种 (B)81种 (C)72种 (D)27种8梯形的两条对角线把梯形分成四部分,有五种不同的颜色给这四部分涂色,每一部分涂一种颜色,任何相邻(具有公共边)的两部分涂不同的颜色,则不同的涂色方法有( )(A) 180种 (B)240种 (C)260种 (D)320种9将1,2,3,4,5,6,7,8,9这九个数排成三横三纵的方阵,要求每一竖列的

18、三个数从前到后都是由从小到大排列,则不同的排法种数是10 10个相同的小球放入编号为1,2,3的三个盒子内,要求每个盒子的球数不小于它的编号数,则不同的放法共有种,11过正方体的每三个顶点都可确定一个平面,其中能与这个正方体的12条棱所成的角都相等的不同平面的个数为个12从单词“equation”中选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同的排列共有( )(A) 120个 (B)480个 (C)720个 (D)840个13将5枚相同的纪念邮票和8张相同的明信片作为礼品送给甲、乙两名学生,全部分完且每人至少有一件礼品,不同的分法是( )(A)52 (B)40 (C)38 (D)11参考答案:1(B) 2(A) 3(C) 4(B) 5(C) 6(D) 7(D) 8(C) 91680 1015 118 12(B) 13(A)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3