ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:465KB ,
资源ID:2188029      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-2188029-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(动能定理的应用(知识梳理).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

动能定理的应用(知识梳理).doc

1、动能定理的应用【学习目标】1进一步深化对动能定理的理解。2会用动能定理求解变力做功问题。3会用动能定理求解单物体或多物体单过程问题以及与其他运动形式的结合问题。4知道用动能定理解题的一般步骤。【要点梳理】要点一、动能定理的推导要点诠释:1推导过程:一个运动物体,在有外力对它做功时,动能会发生变化。设一个质量为m的物体,原来的速度是,动能是,在与运动方向相同的恒定外力F的作用下,发生一段位移,速度增加到,动能增加到。在这一过程中外力对物体所做的功。根据牛顿第二定律和运动学公式得到所以或2关于公式的几点说明(1)上面我们设外力方向与运动方向相同,导出了关系式,这时外力做正功,动能增加。外力方向与运

2、动方向相反时,上式同样适用,这时外力所做的功是负值,动能的变化也是负值;(2)外力对物体做负功,往往说成物体克服这个力做了功。因此,对这种情形,也可以说物体克服阻力所做的功等于动能的减少;(3)如果物体不只受到一个力,而是受到几个力,上述结论仍旧正确。只是外力所做的功是指各个力所做的功的代数和,即外力所做的总功。3动能定理的实质动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的大小由做功的多少来量度。动能定理的实质是反映其它形式的能通过做功而和动能转化之间的关系,只不过在这里其它形式的能并不一定出现,而是以各种性质的力所做的机械功(等

3、式左边)的形式表现出来而已。要点二、对动能定理的进一步理解要点诠释:1动能定理的计算式为标量式,计算外力对物体做的总功时,应明确各个力所做功的正负,然后求其所有外力做功的代数和;求动能变化时,应明确动能没有负值,动能的变化为末动能减去初动能。2位移和速度必须是相对于同一个参考系的,一般以地面为参考系。3动能定理公式中等号的意义等号表明合力做的功与物体动能的变化间的三个关系:(1)数量相等:即通过计算物体动能的变化来求合力的功,进而求得某一力的功。(2)单位相同:都是焦耳。(3)因果关系:合外力的功是物体动能变化的原因。4动能定理既适用于一个持续的过程,也适用于分段过程的全过程。5动能定理应用广

4、泛,直线运动、曲线运动、恒力做功、变力做功、同时做功、分段做功各种情况均适用。要点三、应用动能定理的基本步骤要点诠释:1选取研究对象,明确它的运动过程;2分析研究对象的受力情况和各力的做功情况;受哪些力各力是否做功做正功还是负功做多少功然后求解各个外力做功的代数和3明确物体在过程的始末状态的动能Ek1和Ek2;4列出动能定理的方程及其他必要的解题方程,进行求解。要点四、应用动能定理时应注意的问题要点诠释:1有些力在物体运动的全过程中不是始终存在的,因此在求解物体运动过程中外力的总功时,要注意把物体的受力与运动结合分析。2动能定理是计算物体位移和速率的简洁公式,当题目中涉及到位移时可优先考虑动能

5、定理。3若物体运动过程中包含几个不同的物理过程,用动能定理解题时可以分段处理,也可取全过程直接列式。【典型例题】类型一、用动能定理求变力做功例1、如图所示,质量为的小球,从半径的半圆形轨道上的A点开始下滑,A点与圆心O点在同一水平面上,到达最低点B的速度。求在弧AB段阻力对物体所做的功Wf。(取)【思路点拨】物体在弧AB段运动过程中受重力、弹力和阻力作用,其中弹力和阻力是变力,但在此过程中弹力对小球不做功;重力是恒力,做正功,阻力做负功。在这一过程中,可用动能定理。【解析】重力的功。由动能定理有:所以【总结升华】动能定理既适用于直线运动,也适用于曲线运动,既适用于恒力做功,也适用于变力做功。力

6、做功时可以是连续的,也可以是不连续的,可以是在一条直线上的,也可以是不在一条直线上的。举一反三【变式1】在距地面高处,一人以的速度水平抛出一个质量为的物体,物体落地时速度大小为,试求:()(1)人抛出物体的过程中对物体所做的功为多少?(2)飞行过程中物体克服空气阻力所做的功为多少?【答案】(1)200J (2)88J【解析】(1)抛出物体的过程中,只有人做功,这个过程很短暂,人施加的力可以说是一个瞬间的力,该过程人的功无法用做功公式求解。所以只能用动能定理求解。由动能定理得:(2)飞行过程,物体除受重力作用外,还有空气阻力做功,由动能定理得:即:解得:【变式2】如图所示,质量为m的物体用细绳经

7、过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值时,转动半径为R,当拉力为时,物体仍做匀速圆周运动,半径为2R,则外力对物体做功的大小是( )A B C D零【答案】A【解析】设当绳的拉力为时,小球做匀速圆周运动的线速度为,则有当绳的拉力为时,小球做匀速圆周运动的线速度为,则有由动能定理:故答案为A。类型二、动能定理解单体多过程问题例2、如图所示,物体从高为的光滑斜面顶端由静止开始沿斜面下滑,最后停在水平面上与斜面顶端水平距离为的地方,物体与斜面和水平面间的动摩擦因数均为,试证明:.【解析】设斜面长为,物体在水平面上滑行的位移大小为,下面倾角为。两个物体的受力图如下,在斜面上有:在水平

8、面上:对整个过程根据动能定理列方程则:展开得:因为:所以:【总结升华】对这种多过程问题,既可以分段利用动能定理列方程求解,也可以对全过程利用动能定理列方程求解,解题时可根据具体情况选择使用举一反三【变式1】如图所示,光滑1/4圆弧的半径为0.8m,有一质量为1.0kg的物体自A点从静止开始下滑到B点,然后沿水平面前进4.0m,到达C点停止。g取10m/s2,求:(1)物体到达B点时的速率。(2)在物体沿水平面运动的过程中摩擦力做的功。(3)物体与水平面间的动摩擦因数. 【答案】(1)(2)(3)【解析】(1)物体在AB过程中,只有重力做功,由动能定理:解得:(2)在水平面上,只有摩擦力做功,由

9、动能定理:解得:(3)由做功公式:【变式2】如图所示,一质量为2 kg的铅球从离地面2 m高处自由下落,陷入沙坑2 cm深处,求沙子对铅球的平均阻力【思路点拨】多过程问题要注意各个过程中的受力情况的变化。【解析】解法一:铅球的运动分为自由下落和陷入沙坑减速运动两个过程,根据动能定理,分段列式设铅球自由下落到沙面时的速度为v,则设铅球在沙中受到的平均阻力为F,则代入数据解得F2020 N 解法二:全程列式:全过程中重力做功mg(H+h),进入沙中阻力做功-Fh,全程来看动能变化为零,则由 得 解得【变式3】质量为m=1.5kg的物块(可视为质点)在水平恒力F作用下,从水平面上A点由静止开始运动,

10、运动一段距离后撤去该力,物块继续滑行t=2.0s停止在B点。已知A、B两点间的距离为S=5.0m,物块与水平面间的摩擦因数=0.2,求恒力F。()【思路点拨】本题用运动学和动能定理求解。【答案】【解析】设撤去力F前物块位移为S1,撤去F时物块的速度为。物块所受的摩擦力,由运动学公式可得:即S1=1m对整个过程用动能定理:【总结升华】本题可以有多种解法,运用动能定理较为简单。例3、如图所示,斜面倾角为,滑块质量为,滑块与斜面间的动摩擦因数,从距挡板为的位置以的速度沿斜面向上滑行。设重力沿斜面的分力大于滑动摩擦力,且每次与挡板碰撞前后的速度大小保持不变,斜面足够长。求滑块从开始运动到最后停止滑行的

11、总路程。【思路点拨】由于重力沿斜面的分力大于滑动摩擦力,物体虽经多次往复运动,最终将停止在挡板处。整个过程中只有重力与摩擦力对物体做功。【解析】摩擦力一直做负功,其绝对值等于摩擦力与路程的乘积,由动能定理得解得【总结升华】动能定理只涉及初、末状态而不涉及过程中的每一个细节,因此对于做往复运动的物体运用动能定理解题往往比较简便,本题也可用牛顿运动定律结合运动学公式一步步求解,但十分繁琐。举一反三【变式1】如图所示质量为的物体置于光滑水平面,一根绳子跨过定滑轮一端固定在物体上,另一端在力作用下,以恒定速率竖直向下运动,物体由静止开始运动到绳与水平方向夹角的过程中,绳中张力对物体做的功为_。v0F【

12、解析】当绳与水平方向夹角时,物体的速度为v0vv0F选物体为研究对象,研究物体由静止开始到绳与水平方向夹角为的过程,根据动能定理可知,绳中张力对物体做的功等于物体动能的增加。即【变式2】在水平恒力作用下,物体沿光滑曲面从高为的A处运动到高为的B处,若在A处的速度为,B处速度为,则AB的水平距离为多大?【思路点拨】用牛顿定律遇到困难,使用动能定理。【解析】A到B过程中,物体受水平恒力F,支持力N和重力mg的作用。三个力做功分别为、0和,所以动能定理写为:解得:【总结升华】从此例可以看出,以我们现在的知识水平,牛顿定律无能为力的问题,动能定理可以很方便地解决,其关键就在于动能定理不计运动过程中瞬时

13、细节。类型三、动能定理解多体问题例4、如图所示,用细绳连接的A、B两物体质量相等, A位于倾角为30的斜面上,细绳跨过定滑轮后使A、B均保持静止,然后释放,设A与斜面间的滑动摩擦力为A受重力的0.3倍,不计滑轮质量和摩擦,求B下降1m时的速度多大。【解析】解法一:对A使用动能定理:对B使用动能定理:得:解法二:将A、B看成一整体。(因二者速度、加速度大小均一样),此时拉力T为内力,求外力做功时不计,则动能定理写为: 二式联立解得:【总结升华】上述两种解法结论是一致的,而方法二中研究对象的选择使解题过程简化,因而在使用动能定理时要适当选取研究对象。举一反三【变式】一辆汽车通过图中的细绳提起井中质

14、量为m的物体。开始时,车在A点,绳子已经拉紧且是竖直的,左侧绳长为H。提升时,车加速向左运动,沿水平方向从A经过B驶向C。设A到B的距离也为H,车过B点时的速度为v。求在车由A移到B的过程中,绳Q端的拉力对物体做的功。(设绳和滑轮的质量及摩擦不计,滑轮尺寸不计)mQABCHH【解析】本题中汽车和重物构成连接体,但解题通常取重物为研究对象,根据动能定理列方程: (1) (2)由于左边绳端和车有相同的水平速度v,v可分解成沿绳子方向的两个分速度,mQABCHHvxv (3)将(3)式和(2)式代入(1)式可得:例5、总质量为的列车,沿水平直线轨道匀速前进,其末节车厢质量为,中途脱节,司机发觉时,机

15、车已行驶的距离,于是立即关闭发动机除去牵引力,设运动的阻力与质量成正比,机车的牵引力是恒定的,当列车的两部分都停止时,它们的距离是多少?【思路点拨】车头和脱节的车厢运动情景不同,应画好运动示意图。【解析】解法一:先画出草图如图所示,在图中标明各部分的位移对车头,在脱节前后的整个过程中运用动能定理有: 对末节车厢,应用动能定理有 由位移关系知: 由于列车脱节前做匀速运动 故 由联立得:解法二:设列车匀速行驶时速度为,则脱节后,尾部车厢做匀减速运动至停止,运动过程中初速度为,末速度为零,设加速度大小为,运动位移为对车头部分的运动,作如图所示分析图设在A处脱节,运动至B点时才发觉,后立即关闭发动机,

16、则AB段上为匀加速运动,达B点时速度有最大值,从B点开始,头部车厢做匀减速运动至D点刚好停止考查BD过程,其中必有一点车速为,设为C点,则CD过程做初速度为、加速度大小为、末速度为零的运动,此段位移与尾部车厢的位移相同由此可知,当两部分都停止运动后,两车的间距大小等于AC的大小 根据以上分析,取车头部分为研究对象,取AC过程来分析,依动能定理有:联立解得,故两车都停止后相隔的间距为:解法三:补偿法 若脱节后立即关闭发动机,则车头、车尾车厢应前进相同的距离而停在一起现在之所以停下后拉开一段距离,是因为牵引力在的距离上多做了功,因而车头车厢动能多了一些,使其克服阻力多走一段距离可见,在距离上做的功

17、应等于阻力在距离上做的功,即,又,故【总结升华】用牛顿第二定律解此题后再与应用动能定理的解法相比较,动能定理解法的简便之处是显而易见的动能定理不需要涉及列车脱节前后运动情况的细节,只要根据始末两个状态给出方程即可从该题还可以看出,动能定理不仅适用于运动状态不变的过程,也适用于其中包含几个不同的运动状态的全过程,不过应当注意分析各个不同过程的受力情况和做功情况,将全过程所有力做的功的代数和代入方程可见,运用动能定理时要灵活选取过程,过程的选取对解题难易程度有很大影响类型四、动能定理与圆周、平抛运动的结合例6、质量为的物体由圆弧轨道顶端从静止开始释放,如图所示, A为轨道最低点,A与圆心O在同一竖

18、直线上,已知圆弧轨道半径为R,运动到A点时,物体对轨道的压力大小为,求此过程中物体克服摩擦力做的功。 【答案】【解析】A点是圆周的最低点,仍然在圆周上,需要向心力,所以小球在A点的合力提供向心加速度,由牛顿第二定律:解得:在圆弧轨道下滑过程中,由动能定理得:所以:举一反三【变式1】如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高;质量为m的质点自轨道端点P静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g。质点自P滑到Q的过程中,克服摩擦力所做的功为( ) A B C D【答案】C【解析】当质点由P点滑到Q点时,对轨道的正压力为FN=2mg,由牛顿第二定律得。对质点

19、自P滑到Q点应用动能定理得:,得:,因此,A、B、D错,C正确。【总结升华】典型的曲线运动,是非匀速圆周最低点问题与动能定理的综合。【变式2】如图所示,一个光滑的水平轨道与半圆轨道相连接,其中半圆轨道在竖直平面内,半径为R,质量为m的小球以某速度从A点无摩擦地滚上半圆轨道,小球通过轨道的最高点B后恰好做平抛运动,且正好落在水平地面上的C点,已知AC=AB=2R,求:(1)小球在A点时的速度大小(2)小球在B点时半圆轨道对它的弹力【答案】;0 【解析】(1)先研究小球从B点平抛到C点过程:竖直方向:水平方向:联立解得:从A到B过程,由动能定理:解得:(2)小球在轨道最高点时,假设除重力外,还受到

20、轨道的弹力N,由牛顿第二定律得:解得:【变式3】如图,让质量m5kg的摆球由图中所示位置A从静止开始下摆。摆至最低点B点时恰好绳被拉断。设摆线长1.6m,悬点O与地面的距离OC4m,若空气阻力不计,绳被拉断瞬间小球的机械能无损失。(g10m/s2)求:(1)绳子所能承受的最大拉力T(2)摆球落地的速率v【答案】;【解析】(1)根据几何关系,AB两点高度差,摆球从A到B过程由动能定理得:解得:在最低点B,小球受力如图,由牛顿第二定律:解得,所以,绳子能承受的最大拉力为(2)绳子断裂后,小球做平抛运动,由动能定理:解得【总结升华】分清楚物体运动的各个过程,表示出全过程中各力所做的功和初、末态动能的

21、变化是解题的关键 例7、如图所示,用一块长L1=1.0 m的木板在墙和桌面间架设斜面,桌子高H=0.8 m,长L2=1.5 m。斜面与水平桌面的倾角可在060间调节后固定。将质量m=0.2 kg的小物块从斜面顶端静止释放,物块与斜面间的动摩擦因数1=0.05,物块与桌面间的动摩擦因数为2,忽略物块在斜面与桌面交接处的能量损失(重力加速度取g=10 m/s2;最大静摩擦力等于滑动摩擦力) (1)求角增大到多少时,物块能从斜面开始下滑;(用正切值表示) (2)当角增大到37时,物块恰能停在桌面边缘,求物块与桌面间的动摩擦因数2;(已知sin37=0.6,cos37=0.8) (3)继续增大角,发现

22、=53时物块落地点与墙面的距离最大,求此最高距离xm。 【解析】(1)为使小物块下滑 mg sin1mgsin 满足的条件 tan0.05 (2)克服摩擦力做功 由动能定理得 mgL1sinWf=0 代入数据得 2=0.8 (3)由动能定理得 代入数据得 v=1 m/s t=0.4s x1=vtx1=0.4 m xm=x1+L2=1.9m 【总结升华】(1)下滑的条件是重力沿斜面的分力大于等于最大静摩擦力。(2)运动情景是先加速后减速,涉及到位移,采用动能定理解题最简单。举一反三【变式1】如图所示,一固定的锲形木块,其斜面的倾角,另一边与地面垂直,顶上有一定滑轮,一柔软的细绳跨过定滑轮,两端分别与物块A和B连接。A的质量为,B的质量为。开始时将B按在地面上不动,然后放开手,让A沿斜面下滑而B上升。物块A与斜面间动摩擦因数为。设当A沿斜面下滑距离后,细线突然断了,取,试求:(1)绳断瞬间物块A的速率;(2)物块B上升的最大高度。30BA【解析】(1)设B的质量为,由动能定理得:(2)B以的初速度做竖直上抛运动,设继续上升的高度为,则:物块B上升的最大高度第 10 页

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3