ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:901KB ,
资源ID:2183542      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-2183542-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年高考物理总复习第九章磁场综合检测教科版20180723325.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2019年高考物理总复习第九章磁场综合检测教科版20180723325.doc

1、磁场综合检测(时间:90分钟满分:100分)一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,第17小题只有一个选项正确,第812小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分)1.地球的地理两极与地磁两极并不完全重合,它们之间存在磁偏角,首先观测到磁偏角的是(D)A.意大利航海家哥伦布B.葡萄牙航海家麦哲伦C.我国的航海家郑和D.中国古代科学家沈括解析:世界上第一个清楚地、准确地论述磁偏角的是沈括.沈括是中国历史上最卓越的科学家之一,他发现了地磁偏角的存在,比欧洲发现地磁偏角早了四百多年,选项D正确.2.如图,一个环形电流的中心有一根

2、通电直导线,则环受到的磁场力(D)A.沿环半径向外B.沿环半径向内C.沿通电直导线水平向左D.等于零解析:通电直导线产生的磁场是以导线上各点为圆心的同心圆,而环形电流的方向与磁场方向平行,即B平行I,所以通电圆环不受磁场力的作用,即F=0,选项D正确,A,B,C错误.3.在匀强磁场中,一个原来静止的原子核,由于放出射线,结果得到一张两个相切圆的径迹照片(如图所示),今测得两个相切圆半径之比R1R2=a,新核与射线质量之比为b,则下列说法正确的是(B)A.放出的射线为高速电子流B.半径为r2的圆为放出射线的运动轨迹C.射线与新核动能之比为aD.射线与新核质子数之比为b解析:根据动量守恒可以知道,

3、放出射线后的粒子动量大小相等,方向相反,则根据左手定则可以知道,放出的粒子均带正电,选项A错误;放射出粒子在磁场中做匀速圆周运动,则qvB=m,即R=,由于动量守恒,而且放出的粒子电荷量小,则半径R大,故半径为r2的圆为放出射线的运动轨迹,选项B正确;根据动量与动能的关系Ek=,则动能之比等于质量的反比,故射线与新核动能之比为b,选项C错误;射线与新核质子数之比即为电荷量之比,由于R=,则q=,即射线与新核质子数之比等于半径的反比,射线与新核质子数之比为a,选项D错误.4.如图所示,用两根相同的细绳水平悬挂一段均匀载流直导线MN,电流I方向从M到N,绳子的拉力均为F.为使F=0,可能达到要求的

4、方法是(C)A.加水平向右的磁场B.加水平向左的磁场C.加垂直纸面向里的磁场D.加垂直纸面向外的磁场解析:根据左手定则可知,在MN中通入电流,在空间加上垂直于纸面向里的磁场,可以使MN受到向上的安培力,这样可以使MN受到绳子拉力为零,选项A,B,D错误,C正确.5.将一块长方体形状的半导体材料样品的表面垂直磁场方向置于磁场中,当此半导体材料中通有与磁场方向垂直的电流时,在半导体材料与电流和磁场方向垂直的两个侧面会出现一定的电压,这种现象称为霍尔效应,产生的电压称为霍尔电压,相应的将具有这样性质的半导体材料样品就称为霍尔元件.如图所示,利用电磁铁产生磁场,毫安表检测输入霍尔元件的电流,毫伏表检测

5、霍尔元件输出的霍尔电压.已知图中的霍尔元件是P型半导体,与金属导体不同,它内部形成电流的“载流子”是空穴(空穴可视为能自由移动带正电的粒子).图中的1,2,3,4是霍尔元件上的四个接线端.当开关S1,S2闭合后,电流表A和电表B,C都有明显示数,下列说法中正确的是(C)A.电表B为毫伏表,电表C为毫安表B.接线端4的电势高于接线端2的电势C.若调整电路,使通过电磁铁和霍尔元件的电流与原电流方向相反,但大小不变,则毫伏表的示数将保持不变D.若适当减小R1、增大R2,则毫伏表示数一定增大解析:由题图可知,电表B串联在电源E2的电路中,故它是电流表,即毫安表,而电表C是并联在2,4两端的,它是测量霍

6、尔电压的,故它是电压表即毫伏表,选项A错误;由于霍尔元件的载流子是带正电的粒子,磁场方向向下,电流方向由1到3,由左手定则可知,带正电的粒子受到的洛伦兹力的方向指向极板2,即接线端2的电势高于接线端4的电势,选项B错误;稳定时,粒子受到的洛伦兹力与电场力相平衡,即Bqv=Eq=,解得U=Bvd,当电流方向都相反,但大小不变时,粒子的偏转方向与原来相同,但仍存在如上的平衡关系式,由于电流的大小不变,由电流的微观表达式I=neSv可知,其粒子的定向移动速度也不变,故霍尔电压的大小不变,即毫伏表的示数将保持不变,选项C正确;若减小R1,则会让B增大,若增大R2,会让电流I减小,粒子的定向移动速率v也

7、变小,则不能确定霍尔电压的变化情况,故毫伏表的示数不一定增大,选项D错误.6.如图(甲)所示,a,b两平行直导线中通有相同的电流,当两通电导线垂直圆平面放置于圆周上,且两导线与圆心连线的夹角为60时,圆心处的磁感应强度大小为B.如图(乙)所示,c导线中通有与a,b导线完全相同的电流,a,b,c垂直圆平面放置在圆周上,且a,b两导线与圆心连线的夹角为120,b,c两导线与圆心连线的夹角为30,则此时圆心处的磁感应强度大小为(A)A.B B.B C.0 D.B解析:当a,b两导线与圆心连线的夹角为60时,它们在圆心处的磁感应强度如图(甲)所示,设Ba=Bb=B1,则有B=B1.当a,b两导线与圆心

8、连线夹角为120时,如图(乙)所示,它们在圆心处的磁感应强度矢量和为B=B1,再与c导线在圆心处产生的磁场叠加后磁感应强度矢量和为B1,因此圆心处的磁感应强度大小为B,选项A正确.7.如图所示为一种质谱仪的工作原理示意图,此质谱仪由以下几部分构成:离子源、加速电场、静电分析器、磁分析器、收集器.静电分析器通道中心线半径为R,通道内有均匀辐射电场,在中心线处的电场强度大小为E;磁分析器中分布着方向垂直于纸面,磁感应强度为B的匀强磁场,其左边界与静电分析器的右边界平行.由离子源发出一个质量为m、电荷量为q的正离子(初速度为零,重力不计),经加速电场加速后进入静电分析器,沿中心线MN做匀速圆周运动,

9、而后由P点进入磁分析器中,最终经过Q点进入收集器.下列说法中正确的是(B)A.磁分析器中匀强磁场方向垂直于纸面向内B.加速电场中的加速电压U=C.磁分析器中圆心O2到Q点的距离d=D.任何离子若能到达P点,则一定能进入收集器解析:进入静电分析器后,正离子顺时针转动,所受洛伦兹力指向圆心,根据左手定则,磁分析器中匀强磁场方向垂直于纸面向外,选项A错误;离子在静电分析器中做匀速圆周运动,根据牛顿第二定律有Eq=m,设离子进入静电分析器时的速度为v,离子在加速电场中加速的过程中,由动能定理有qU=mv2,解得U=,选项B正确;由B项解析可知R=,与离子质量、电荷量无关.离子在磁分析器中做匀速圆周运动

10、,由牛顿第二定律有qvB=m,得R=,即d=,选项C错误;圆周运动的轨道半径与电荷的质量和电荷量有关,能够到达P点的不同离子,半径不一定都等于d,不一定都能进入收集器,选项D错误.8.如图所示,回旋加速器D形盒的半径为R,所加磁场的磁感应强度为B,被加速的质子从D形盒中央由静止出发,经交变电场加速后进入磁场.设质子在磁场中做匀速圆周运动的周期为T,若忽略质子在电场中的加速时间,则下列说法正确的是(AD)A.如果只增大交变电压U,则质子在加速器中运行时间将变短B.如果只增大交变电压U,则电荷的最大动能会变大C.质子在电场中加速的次数越多,其最大动能越大D.交变电流的周期应为T解析:如果只增大交变

11、电压U,则质子在加速器中加速次数减少,因此质子的运行时间将变短,选项A正确;根据qvmB=m,得vm=,电荷的最大动能与加速的电压和加速的次数无关,选项B,C错误.回旋加速器粒子在磁场中运动的周期和高频交变电流的周期相等,选项D正确.9.如图所示,一个带正电荷的小球从a点出发水平进入正交垂直的匀强电场和匀强磁场区域,电场方向竖直向上,某时刻小球运动到了b点,则下列说法正确的是(CD)A.从a到b,小球可能做匀速直线运动B.从a到b,小球可能做匀加速直线运动C.从a到b,小球动能可能不变D.从a到b,小球机械能增加解析:带电小球的初速度是水平的,从a运动到b点的过程中小球在竖直方向上发生位移,说

12、明小球做的是曲线运动,所以小球受力不为零,即小球不可能做匀速直线运动,选项A错误;从以上分析可知小球做曲线运动,即变速运动,故小球受到磁场的洛伦兹力也是变化的,故小球受到的合力是变力,所以小球不可能做匀加速直线运动,选项B错误;当小球的重力和电场力平衡时,小球受到的洛伦兹力只改变小球的速度方向,小球的动能不变,选项C正确;从a到b,电场方向竖直向上,电场力一定做正功,故机械能增加,选项D正确.10.如图所示,在一个等腰直角三角形ACD区域内有垂直纸面向外的匀强磁场,磁场的磁感应强度大小为B.一质量为m、电荷量为q的带正电粒子(不计重力)从AC边的中点O垂直于AC边射入该匀强磁场区域,若该三角形

13、的两直角边长均为2l,则下列关于粒子运动的说法中正确的是(ACD)A.若该粒子的入射速度为v=,则粒子一定从CD边射出磁场,且距点C的距离为lB.若要使粒子从CD边射出,则该粒子从O点入射的最大速度应为v=C.若要使粒子从AC边射出,则该粒子从O点入射的最大速度应为v=D.该粒子以大小不同的速度入射时,在磁场中运动的最长时间为解析:当v=时,根据洛伦兹力充当向心力可知Bqv=m,解得R=l,根据几何关系可知,粒子一定从距C点为l的位置离开磁场,选项A正确;根据洛伦兹力充当向心力可知v=,因此半径越大,速度越大;根据几何关系可知,使粒子与AD边相切时速度最大,由于AD=2l,则由几何关系可知,最

14、大半径一定大于l,则若要使粒子从CD边射出,则该粒子从O点入射的最大速度应大于,选项B错误;若要使粒子从AC边射出,则该粒子从O点入射的最大半径为l,因此最大速度应为v=,选项C正确;粒子运行周期为,根据几何关系可知,粒子在磁场中最大圆心角为180,故最长时间为,选项D正确.11.如图所示,等腰直角三角形abc区域内存在方向垂直纸面向外的匀强磁场,磁感应强度大小为B.三个相同的带电粒子从b点沿bc方向分别以速度v1,v2,v3射入磁场,在磁场中运动的时间分别为t1,t2,t3,且t1t2t3=331.直角边bc的长度为L,不计粒子的重力,下列说法正确的是(BD)A.三个粒子的速度大小关系可能是

15、v1=v2v3B.三个粒子的速度大小关系可能是v1v2v3C.粒子的比荷=D.粒子的比荷=解析:速度为v1,v2的粒子从ab边穿出,则偏转角为90,但两者的速度大小关系不定,但其半径一定比速度为v3的粒子半径小,由半径公式R=,则v3一定大于v1,v2,选项A错误,B正确;由于速度为v1的粒子偏转90,则t1=,于是=,选项D正确;对速度为v3的粒子偏转30,画出运动轨迹如图所示,由几何关系知R3tan 15+R3tan 15cos 30=L,所以R3=,而R3=,联立得到=,选项C错误.12.图中的虚线为半径为R、磁感应强度大小为B的圆形匀强磁场的边界,磁场的方向垂直圆平面向里.大量的比荷均

16、为的相同粒子由磁场边界的最低点A向圆平面内的不同方向以相同的速度v0射入磁场,粒子在磁场中做半径为r的圆周运动,经一段时间的偏转,所有的粒子均由圆边界离开,所有粒子的出射点的连线为虚线边界的,粒子在圆形磁场中运行的最长时间用tm表示,假设,R,v0为已知量,其余的量均为未知量,忽略粒子的重力以及粒子间的相互作用.则下列表达式正确的是(ACD)A.B=B.B=C.r=D.tm=解析:设从A点射入的粒子与磁场边界的最远交点为B,则B点是轨迹圆的直径与磁场边界圆的交点,的长是边界圆周长的,则AOB=120,sin 60=,得r=,粒子在磁场中运动时,洛伦兹力提供向心力,有qv0B=m,所以B=,选项

17、A,C正确,B错误;粒子在磁场中运动的最长时间为tm=,选项D正确.二、非选择题(共52分)13.(4分)某同学用图中所给器材进行与安培力有关的实验.两根金属导轨ab和a1b1固定在同一水平面内且相互平行,足够大的电磁铁(未画出)的N极位于两导轨的正上方,S极位于两导轨的正下方,一金属棒置于导轨上且与两导轨垂直.(1)在图中画出连线,完成实验电路.要求滑动变阻器以限流方式接入电路,且在开关闭合后,金属棒沿箭头所示的方向移动.(2)为使金属棒在离开导轨时具有更大的速度,有人提出以下建议:A.适当增加两导轨间的距离B.换一根更长的金属棒C.适当增大金属棒中的电流其中正确的是(填入正确选项前的标号)

18、.解析:(1)实验电路连线如图所示.(2)为使金属棒离开导轨时具有更大的速度,则金属棒运动时需要更大的加速度,即应受到更大的安培力,根据F=ILB可知,应使I,L变大,即选项A,C正确.答案:(1)见解析(2)AC评分标准:每问2分.14.(8分)物体的带电荷量是一个不易测得的物理量,某同学设计了如下实验来测量带电物体所带电荷量.如图(a)所示,他将一由绝缘材料制成的小物块A放在足够长的木板上,打点计时器固定在长木板末端,物块靠近打点计时器,一纸带穿过打点计时器与物块相连,操作步骤如下,请结合操作步骤完成以下问题.(1)为消除摩擦力的影响,他将长木板一端垫起一定倾角,接通打点计时器,轻轻推一下

19、小物块,使其沿着长木板向下运动.多次调整倾角,直至打出的纸带上点迹,测出此时木板与水平面间的倾角,记为0.(2)如图(b)所示,在该装置处加上一范围足够大的垂直纸面向里的匀强磁场,用细绳通过一轻小定滑轮将物块A与物块B相连,绳与滑轮摩擦不计.给物块A带上一定量的正电荷,保持倾角0不变,接通打点计时器,由静止释放小物块A,该过程可近似认为物块A带电荷量不变,下列关于纸带上点迹的分析正确的是.A.纸带上的点迹间距先增加后减小至零B.纸带上的点迹间距先增加后减小至一不为零的定值C.纸带上的点迹间距逐渐增加,且相邻两点间的距离之差不变D.纸带上的点迹间距逐渐增加,且相邻两点间的距离之差逐渐减少,直至间

20、距不变(3)为了测定物体所带电荷量q,除0、磁感应强度B外,本实验还必须测量的物理量有.A.物块A的质量MB.物块B的质量mC.物块A与木板间的动摩擦因数D.两物块最终的速度v(4)用重力加速度g,磁感应强度B,0和所测得的物理量可得出q的表达式为q=.解析:(1)此实验平衡摩擦力后,确定滑块做匀速直线运动的依据是,看打点计时器在纸带上所打出点的分布应该是等间距的.(2)设A的质量为M,B的质量为m,没有磁场时,对A受力分析,A受到重力Mg、支持力、摩擦力.根据平衡条件可知f=Mgsin 0,FN=Mgcos 0,又因为f=FN,所以=tan 0;当存在磁场时,以A,B整体为研究对象,由牛顿第

21、二定律可得(mg+Mgsin 0)-(Bqv+Mgcos 0)=(M+m)a由此式可知,v和a是变量,其他都是不变的量,所以A,B一起做加速度减小的加速运动,直到加速度减为零后做匀速运动,即速度在增大,加速度在减小,最后速度不变.所以纸带上的点迹间距逐渐增加,说明速度增大;根据x=at2,可知,加速度减小,则相邻两点间的距离之差逐渐减小;匀速运动时,间距不变,选项D正确,A,B,C错误.(3)(4)根据(mg+Mgsin 0)-(Bqv+Mgcos 0)=(M+m)a,可得当加速度减为零时,速度最大,设最大速度为v,则(mg+Mgsin 0)-(Bqv+Mgcos 0)=0化简得q=,把=ta

22、n 0代入,得q=,由此可知为了测定物体所带电荷量q,除0、磁感应强度B外,本实验还必须测量的物理量有物块B的质量m和两物块最终的速度v.答案:(1)间距相等(或均匀)(2)D(3)BD(4)评分标准:每问2分.15.(7分)如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B.圆心O处有一放射源,放出粒子的质量为m、带电荷量为q,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA与初速度方向夹角为60,要想使该粒子经过磁场后第一次通过A点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多

23、少?解析:(1)如图(甲)所示,设粒子在磁场中的轨道半径为R1,则由几何关系得R1=,(1分)又qv1B=m,得v1=.(2分)(2)如图(乙)所示,设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R2,则由几何关系有(2r-R2)2=+r2,(1分)可得R2=(1分)又qv2B=m,(1分)可得v2=,(1分)故要使粒子不穿出环形区域,粒子的初速度不能超过.答案:(1)(2)16.(8分)如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向内的有界圆形匀强磁场区域(图中未画出);在第二象限内存在沿x轴负方向的匀强电场,一粒子源固定在x轴上的A点,A

24、点坐标为(-L,0).粒子源沿y轴正方向释放出速度大小为v的电子,电子恰好能通过y轴上的C点,C点坐标为(0,2L),电子经过磁场偏转后恰好垂直通过第一象限内与x轴正方向成15角的射线ON(已知电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用).求:(1)第二象限内电场强度E的大小;(2)电子离开电场时的速度方向与y轴正方向的夹角;(3)圆形磁场的最小半径Rmin.解析:(1)从A到C的过程中,电子做类平抛运动,有L=t2(1分)2L=vt,(1分)联立解得E=.(1分)(2)设电子到达C点的速度大小为vC,方向与y轴正方向的夹角为.由动能定理,有m-mv2=eEL(1分)解得

25、vC=v,cos =,解得=45.(1分)(3)电子的运动轨迹图如图,电子在磁场中做匀速圆周运动的半径R=,(1分)电子在磁场中偏转120后垂直于ON射出,则磁场圆最小半径Rmin=Rsin 60(1分)由以上两式可得Rmin=.(1分)答案:(1)(2)45(3)17.(11分)如图(甲)所示,在平行边界MN,PQ之间存在宽度为d的匀强电场,电场周期性变化的规律如图(乙)所示,取竖直向下为电场正方向;在平行边界PQ右侧和MN左侧存在如图(甲)所示的两个长为2d、宽为d的匀强磁场区域和,其边界点分别为PQCD和MNFE.已知区域内匀强磁场的磁感应强度大小是区域内匀强磁场的磁感应强度大小的3倍.

26、在区域右边界中点A处,有一质量为m、电荷量为q、重力不计的带正电粒子以初速度v0沿竖直方向从磁场区域开始运动,以此作为计时起点,再经过一段时间粒子又恰好回到A点,如此循环,粒子循环一周,电场恰好变化一个周期,已知粒子离开区域进入电场时,速度恰好与电场方向垂直,sin 53=0.8,cos 53=0.6.求:(1)区域的磁感应强度大小B;(2)电场强度大小E及电场的周期T.解析:(1)粒子在区域做圆周运动的半径r=d,(1分)由洛伦兹力提供向心力知qv0B=,联立得B=.(1分)(2)画出粒子运动的轨迹示意图如图所示,粒子在区域做匀速圆周运动,圆心为O1,粒子从区域进入电场,在电场中做类平抛运动

27、,在区域做匀速圆周运动,圆心为O2,半径记为R,在区域做匀速圆周运动圆心O2与区域做匀速圆周运动的圆心O1的连线必须与边界垂直才能完成上述运动.粒子从区域进入电场做类平抛运动,水平方向d=v0t(1分)竖直方向y=at2=t2(1分)离开电场时沿电场方向的速度vy=at=,离开电场时速度方向与边界MN的夹角为,离开电场时速度为v,v0=vsin 粒子在区域做匀速圆周运动由洛伦兹力提供向心力,知3qvB= (1分)由几何关系有2y+2Rsin =2d(1分)联立以上各式得E=(1分)由tan =,得=37粒子在区域中运动的时间t1=(1分)粒子在区域中运动的时间t2=(1分)粒子在电场中运动的时

28、间t3=(1分)电场变化的周期等于粒子运动的周期,所以电场周期T=t1+t2+t3=d.(1分)答案:(1)(2)d18.(14分)aa,bb,cc为足够长的匀强磁场分界线,相邻两分界线间距均为d,磁场方向如图所示,区域磁感应强度分别为B和2B,边界aa上有一粒子源P,平行于纸面向各个方向发射速率为的带正电粒子,Q为边界bb上一点,PQ连线与磁场边界垂直,已知粒子质量为m,电荷量为q,不计粒子重力和粒子间相互作用力,求:(1)沿PQ方向发射的粒子飞出区时经过bb的位置;(2)粒子第一次通过边界bb的位置范围;(3)进入区的粒子第一次在磁场区中运动的最长时间和最短 时间.解析:(1)由洛伦兹力充

29、当向心力得Bqv=,R1=(1分)把v=代入得R1=2d(1分)如图(甲)所示sin =,=30(1分)PM=QN=2d-2dcos =(2-)d(1分)则经过bb的位置为Q下方(2-)d处.(2)当带正电粒子速度竖直向上进入磁场,距离Q点上方最远,如图(乙)所示,由几何关系得cos 1=,1=60(1分)QH1=2dsin 1=d(1分)当带正电粒子进入磁场后与bb相切时,距离Q点下方最远,如图(丙)所示,由几何关系得cos 2=,2=60(1分)QH2=2dsin 2=d(1分)粒子通过的范围长度为L=2d.(1分)(3)R2=d(1分)T=轨迹圆所对应的弦越长,在磁场中运动的时间越长.如图(丁)所示,当轨迹圆的弦长为直径时,所对应的时间最长为tmax=(1分)当轨迹圆的弦长为磁场的宽度时,从cc飞出,所对应的时间最短为tmin=(1分)当粒子从Q最上方进入区时,如图(戊)所示,从bb飞出所对应的时间最短为tmin=(1分)所以粒子第一次在磁场中运动的最短时间为tmin=.(1分)答案:见解析第 11 页

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3