ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:73.50KB ,
资源ID:218067      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-218067-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新人教A版选修2-2高中数学第3章数系的扩充与复数的引入章末综合测评3(附解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

新人教A版选修2-2高中数学第3章数系的扩充与复数的引入章末综合测评3(附解析).doc

1、数系的扩充与复数的引入(满分:150分时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1设2(z)3(z)46i,则z()A12iB12iC1i D1iC设zabi(a,bR),则abi,代入2(z)3(z)46i,可得4a6bi46i,所以a1,b1,故z1i.故选C.2设iz43i,则z()A34i B34iC34i D34iC法一:因为iz43i,所以z34i.故选C.法二:设zabi(a,bR),则由iz43i,可得i(abi)43i,即bai43i,所以,即,所以z34i.故选C.3若复数z满足i,其中i为虚数单

2、位,则z()A1i B1iC1i D1iA由已知得i(1i)i1,则z1i,故选A.4若复数z满足iz24i,则在复平面内,z对应的点的坐标是()A(2,4) B(2,4) C(4,2)D(4,2)Cz42i对应的点的坐标是(4,2),故选C.5若a为实数,且(2ai)(a2i)4i,则a()A1B0C1 D2B(2ai)(a2i)4i,4a(a24)i4i.解得a0.故选B.6z1(m2m1)(m2m4)i,mR,z232i,则“m1”是“z1z2”的()A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件A因为z1z2,所以解得m1或m2,所以m1是z1z2的充分不必要条件7设

3、z的共轭复数是,若z4,z8,则等于()AiBiC1DiD设zxyi(x,yR),则xyi,由z4,z8得,所以i.8如图所示,在复平面上,一个正方形的三个顶点对应的复数分别是12i,2i, 0,那么这个正方形的第四个顶点对应的复数为()A3iB3iC13iD13iD12i2i13i,所以C对应的复数为13i.9若复数(bR)的实部与虚部互为相反数,则b()ABCD2C因为i,又复数(bR)的实部与虚部互为相反数,所以,即b.10设zC,若z2为纯虚数,则z在复平面上的对应点落在()A实轴上B虚轴上C直线yx(x0)上D以上都不对C设zxyi(x,yR),则z2(xyi)2x2y22xyi.z

4、2为纯虚数,yx(x0)11已知0a2,复数z的实部为a,虚部为1,则|z|的取值范围是()A(1,5)B(1,3)C(1,)D(1,)C由已知,得|z|.由0a2,得0a24,1a215.|z|(1,)故选C.12设z1,z2为复数,则下列四个结论中正确的是()A若zz0,则zzB|z1z2|Czz0z1z20Dz11是纯虚数或零D举例说明:若z14i,z222i,则z158i,z8i,zz0,但z与z都是虚数,不能比较大小,故A错;因为|z1z2|2不一定等于(z1z2)2,故|z1z2|与不一定相等,B错;若z12i,z212i,则z34i,z34i,zz0,但z1z20不成立,故C错;

5、设z1abi(a,bR),则1abi,故z112bi,当b0时是零,当b0时,是纯虚数故D正确二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13已知复数z(52i)2(i为虚数单位),则z的实部为_21复数z(52i)22120i,其实部是21.14. a为正实数,i为虚数单位,2,则a_.1ai,则|1ai|2,所以a23.又a为正实数,所以a.15设a,bR,abi(i为虚数单位),则ab的值为_8abi53i,依据复数相等的充要条件可得a5,b3.从而ab8.16若关于x的方程x2(2i)x(2m4)i0有实数根,则纯虚数m_.4i设mbi(bR且b0),则x

6、2(2i)x(2bi4)i0,化简得(x22x2b)(x4)i0,即解得m4i.三、解答题(本题共6小题,共70分解答时应写出必要的文字说明、证明过程或演算步骤)17(本小题满分10分)设复数zlg(m22m2)(m23m2)i,当m为何值时,(1)z是实数?(2)z是纯虚数?解(1)要使复数z为实数,需满足解得m2或1.即当m2或1时,z是实数(2)要使复数z为纯虚数,需满足解得m3.即当m3时,z是纯虚数18(本小题满分12分)已知复数z11i,z1z2122i,求复数z2.解因为z11i,所以11i,所以z1z222i122i(1i)1i.设z2abi(a,bR),由z1z21i,得(1

7、i)(abi)1i,所以(ab)(ba)i1i,所以解得a0,b1,所以z2i.19(本小题满分12分)计算:(1);(2)(2i)(15i)(34i)2i.解(1)原式1i.(2)原式(311i)(34i)2i5321i2i5323i.20(本小题满分12分)已知复数z满足|z|1,且(34i)z是纯虚数,求z的共轭复数.解设zabi(a,bR),则abi且|z|1,即a2b21.因为(34i)z(34i)(abi)(3a4b)(3b4a)i,而(34i)z是纯虚数,所以3a4b0,且3b4a0.由联立,解得或所以i,或i.21(本小题满分12分)已知复数z满足|z|,z2的虚部是2.(1)

8、求复数z;(2)设z,z2,zz2在复平面上的对应点分别为A,B,C,求ABC的面积解(1)设zabi(a,bR),则z2a2b22abi,由题意得a2b22且2ab2,解得ab1或ab1,所以z1i或z1i.(2)当z1i时,z22i,zz21i,所以A(1,1),B(0,2),C(1,1),所以SABC1.当z1i时,z22i,zz213i,所以A(1,1),B(0,2),C(1,3),所以SABC1.22(本小题满分12分)已知z为虚数,z为实数(1)若z2为纯虚数,求虚数z;(2)求|z4|的取值范围解(1)设zxyi(x,yR,y0),则z2x2yi,由z2为纯虚数得x2,所以z2yi,则z2yi2iR,得y0,y3,所以z23i或z23i.(2)因为zxyixiR,所以y0,因为y0,所以(x2)2y29,由(x2)29得x(1,5),所以|z4|xyi4|(1,5)6

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3