ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:388.50KB ,
资源ID:215237      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-215237-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018版高中数学(人教A版 选修1-1)教师用书:第二章 2-2-2 双曲线的简单几何性质 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018版高中数学(人教A版 选修1-1)教师用书:第二章 2-2-2 双曲线的简单几何性质 WORD版含解析.doc

1、2.2.2双曲线的简单几何性质1.了解双曲线的简单几何性质(范围、对称性、顶点、实轴长和虚轴长等).(重点)2.理解离心率的定义、取值范围和渐近线方程.(重点)3.能用双曲线的简单几何性质解决一些简单问题.(难点)基础初探教材整理双曲线的简单几何性质阅读教材P49P51例3以上部分,完成下列问题.1.双曲线的简单几何性质标准方程1(a0,b0)1(a0,b0)图形性质范围xa或xaya或ya对称性对称轴:坐标轴,对称中心:原点顶点(a,0),(a,0)(0,a),(0,a)轴长实轴长2a,虚轴长2b离心率e且e1渐近线yxyx2.等轴双曲线(1)定义:实轴和虚轴等长的双曲线叫做等轴双曲线.其方

2、程的一般形式为x2y2(0).(2)性质:渐近线方程为:yx.离心率为:e.判断(正确的打“”,错误的打“”)(1)双曲线是中心对称图形.()(2)双曲线方程中a,b分别为实、虚轴长.()(3)方程1(a0,b0)的渐近线方程为yx.()(4)离心率e越大,双曲线1的渐近线的斜率绝对值越大.()【答案】(1)(2)(3)(4)小组合作型双曲线的几何性质(1)双曲线x2y21的顶点到其渐近线的距离等于()A.B.C.1D.(2)若实数k满足0k5,则曲线1与曲线1的()A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等(3)已知F1,F2分别是双曲线的两个焦点,P为该双曲线上一点,若PF

3、1F2为等腰直角三角形,则该双曲线的离心率为() 【导学号:97792024】A.1B.1C.2D.2【自主解答】(1)双曲线x2y21的顶点坐标为(1,0),渐近线为yx,xy0,顶点到渐近线的距离为d.(2)因为0k0)的一条渐近线的方程为y2x,则b_.【解析】由双曲线x21,得a1,2,b2.【答案】2(2)求双曲线9y24x236的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程.【解】将原方程转化为1,即1,a3,b2,c,因此顶点坐标为A1(3,0),A2(3,0),焦点坐标为F1(,0),F2(,0),实轴长是2a6,虚轴长是2b4,离心率e,渐近线方程yx.利用双曲线的

4、几何性质求其标准方程分别求适合下列条件的双曲线的标准方程:(1)虚轴长为12,离心率为;(2)顶点间距离为6,渐近线方程为yx;(3)与双曲线x22y22有公共渐近线,且过点M(2,2).【精彩点拨】用待定系数法求双曲线的标准方程时,注意先定位再定量,充分利用题中所给出的双曲线的几何性质.【自主解答】(1)设双曲线的标准方程为1或1(a0,b0).由题意知2b12,且c2a2b2,b6,c10,a8.双曲线的标准方程为1或1.(2)当焦点在x轴上时,由且a3得b.所求双曲线的标准方程为1.当焦点在y轴上时,由且a3得b2.所求双曲线的标准方程为1.(3)设与双曲线y21有公共渐近线的双曲线方程

5、为y2k,将点(2,2)代入得k(2)22.双曲线的标准方程为1.1.一般情况下,求双曲线的标准方程关键是确定a,b的值和焦点所在的坐标轴,若给出双曲线的顶点坐标或焦点坐标,则焦点所在的坐标轴易得.再结合c2a2b2及e列关于a,b的方程(组),解方程(组)可得标准方程.2.如果已知双曲线的渐近线方程为yx,那么此双曲线方程可设为(0).再练一题2.求中心在原点,对称轴为坐标轴,且满足下列条件的双曲线方程: 【导学号:97792025】(1)双曲线C的右焦点为(2,0),右顶点为(,0);(2)双曲线过点(3,9),离心率e.【解】(1)设双曲线方程为1(a0,b0).由已知得a,c2,再由a

6、2b2c2,得b21.故双曲线C的方程为y21.(2)由e2,得,设a29k(k0),则c210k,b2c2a2k.于是,设所求双曲线方程为1, 或1,把(3,9)代入,得k161与k0矛盾;把(3,9)代入,得k9,故所求双曲线方程为1.探究共研型直线与双曲线的位置关系探究1怎样判断直线与双曲线的位置关系?【提示】判断直线与双曲线的位置关系,一般先联立方程组,消去一个变量,转化成关于x或y的一元二次方程,再根据一元二次方程去讨论直线和双曲线的位置关系.这时首先要看二次项的系数是否等于0.当二次项系数等于0时,就转化成x或y的一元一次方程,只有一个解.这时直线与双曲线相交只有一个交点.当二次项

7、系数不为零时,利用根的判别式,判断直线和双曲线的位置关系.探究2直线和双曲线只有一个公共点,直线和双曲线一定相切吗?【提示】直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.已知直线yax1与双曲线3x2y21.(1)如果直线与双曲线有两个公共点,求a的取值范围;(2)如果直线与双曲线只有一个公共点,求a的取值范围;(3)如果直线与双曲线没有公共点,求a的取值范围.【精彩点拨】将直线与双曲线方程联立用判别式判断方程组解的个数,并注意对二次项系数的讨论.【自主解答】把yax1代入3x2y21,整理得(3a2)x22ax20.(1)

8、直线与双曲线有两个公共点,判别式4a28(3a2)244a20,且3a20,得a,且a.故当a,且a时,直线与双曲线有两个公共点.(2)直线与双曲线只有一个公共点,或3a20,a或a.故当a或a时,直线与双曲线只有一个公共点.(3)直线与双曲线没有公共点,3a20,且244a20.a或a.故当a或a时,直线与双曲线没有公共点.1.研究直线与双曲线位置关系的一般解法仍然是联立二者方程,解方程组或者转化为一元二次方程,依据根的判别式和根与系数的关系求解.2.直线与双曲线有三种位置关系(1)无公共点,此时直线有可能为双曲线的渐近线.(2)有一个公共点,分两种情况:直线是双曲线的切线,特别地,直线过双

9、曲线一个顶点,且垂直于实轴;直线与双曲线的一条渐近线平行,与双曲线的一支有一个公共点.(3)有两个公共点,可能都在双曲线一支上,也可能两支上各有一点.再练一题3.(1)已知过点P(1,1)的直线l与双曲线x21只有一个公共点,则直线l的斜率k的取值为_.【解析】设直线l的斜率为k,则l:yk(x1)1,代入双曲线方程,得到(4k2)x2(2k2k2)xk22k50.若4k20,即k2,此时直线与双曲线的渐近线平行,直线与双曲线只有一个公共点;若4k20,则(2k2k2)24(4k2)(k22k5)0,解得k.综上可得,直线l的斜率k的取值为或2.【答案】或2(2)已知直线l:xy1与双曲线C:

10、y21(a0).若a,求l与C相交所得的弦长;若l与C有两个不同的交点,求双曲线C的离心率e的取值范围.【解】当a时,双曲线C的方程为4x2y21,联立消去y得3x22x20.设两个交点为A(x1,y1),B(x2,y2).则x1x2,x1x2,于是|AB|.将yx1代入双曲线y21中得(1a2)x22a2x2a20,解得0a且a1.又双曲线的离心率e,e且e,即离心率e的取值范围是(,).1.双曲线2x2y28的实轴长是()A.2B.2C.4D.4【解析】双曲线标准方程为1,故实轴长为4.【答案】C2.下列双曲线中离心率为的是()A.1B.1C.1D.1【解析】双曲线1中a2,b,c,e.【

11、答案】B3.已知双曲线中心在原点,一个顶点的坐标是(3,0)且焦距与虚轴长之比为54,则双曲线的标准方程为_.【解析】由题意得双曲线的焦点在x轴上,且a3,焦距与虚轴长之比为54,即cb54,解得c5,b4,双曲线的标准方程为1.【答案】14.已知双曲线C1:1(a0,b0)与双曲线C2:1有相同的渐近线,且C1的右焦点为F(,0),则a_,b_.【解析】由题意得解得a21,b24.又a0,b0,故a1,b2.【答案】125.求中心在坐标原点,对称轴为坐标轴,经过点(3,2),且一条渐近线的倾斜角为的双曲线的方程. 【导学号:97792026】【解】渐近线方程为yx,设双曲线方程为x23y2.将(3,2)代入求得3,所以双曲线方程为y21.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3