1、专题六:数学方法之特殊证法【考情分析】近几年的高考虽然削弱了在不等式证明方面的要求,但像立体几何中位置关系的认定,数列关系式的认可以及解析几何性质的证明都是频频出现的考试形式。在高考中所占的分值大约在30分左右。这类考题的特点是:(1)立体几何证明多以线、面间垂直或平行关系的证明为主,解决此类问题的思路是应用好在该部分学习的判定定理和性质定理即可;(2)数列题可能是与等差等比数列定义或性质有关的结论的证明问题(譬如证明数列是否为等差或等比数列,这类题目要应用好定义和性质公式,技巧性很强)、也可能是复合不等式知识的或单纯等式形式的与自然数有关的结论的证明问题(解题思路是可能应用数学归纳法或放缩法
2、);(3)解析几何中的解答题经常与平面几何图形相结合,经常判断一些位置关系,此类题目的证明多要结合几何特征,应用好代数关系式说明;预测2012年高考的趋势为:题型、题量以及出题点还和往年一样,基本保持不变;【知识交汇】1定义法所谓定义法,就是直接用数学定义解决问题。数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。简单地说,定义是基本概念对数学实体的高度抽象。用定义法解题,是最直接的方法。2反证法反证法是属于“间接证明法”一类,是从
3、反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。反证法的实质:“若肯定定理的假设而否定其结论,就会导致矛盾”。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。反证法的证题模式可以简要的概括我为“否定推理否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证明的主要三步是:否定结论 推导出矛盾 结论成立。
4、实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单
5、的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。3数学归纳法数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n1(或n)时成立,这是递推的基础;第二步是假设在nk时命题成立,再证明nk1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或nn且nN)结论都正确”。由这两步可以看出,数学归纳法是由递推实现归纳
6、的,属于完全归纳。运用数学归纳法证明问题时,关键是nk1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。4不等式的证明方法(1)比较法是证明不等式最基本、最常用、最重要的方法之一。它包括“作差法”与“作商法”,比差法的理论依据是:比商法的理论依据是a,bR,那么: 判断a,b的大小,当a,bR时,可以通过判断ab与0的大小来完成。当a,bR时,可以通过判断与1的大小来完成。比较法这
7、种方法其本质就在于单独讨论“a,b”不等式难以证明时,就“ab,”整体讨论,使问题迁移“环境”,给问题带来新的结构。对ab,变形后与0,1的比较提供可能,这种变形后的式子结构“ab,”能够和“0,1”比较大小是比较法的精髓。作差法中,对差“ab”的变形方法通常有通分、配方(非负数)、因式分解、二次函数的判别式等。作商法的一般步骤是,求商 变形 判断与1的大小。方法的选择:若不等式两边含有相同的项,或者作差以后能进行因式分解;能用配方法,能写成分式判断其符号,可使用作差法。若不等式两边是指数形式,能使分子、分母变形得到相同结果的不等式,用作商法比较容易,也就是说,凡适合于求“商”运算,并能比较出
8、商与1的大小的不等式,一般都适合于用作商法证明。(2)综合法综合法就是由已知出发,根据不等式性质,基本不等式等,逐步推导得到所要证明的不等式的一种方法,也就是用因果关系书写“从已知出发”借助不等式性质和有关定理,经过逐步的逻辑推理,最后达到待证不等式得证的全过程,其特点可描述为“执因索果”,即从“已知”看“可知”逐步推向“未知”,综合法证明题逻辑性很强,它要求每步推理都要有依据。(3)分析法证明不等式,可以从待证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化成为判定这些充分条件是否具备的问题,如果能断定这些充分条件都已具备,那么就可以断定原不等式成立,这种证明方法叫做分析法。分
9、析法是从结论入手,逆求使它成立的充分条件,直到和已知条件沟通为止,概括地说就是“从未知,看需知,逐步靠拢已知”。分析法证明“若A则B”的基本模式是欲证B为真只需证B1为真只需证B2为真只需证A为真,今已知A为真,故B必真其逻辑关系是(4)放缩法在证明不等式AB时,可以构造出数学式C,使AC,且CB,则AB得证。其中数学式C常常通过将A缩小或将B放大而构成,它的依据是不等式的传递性,这种证明方法叫做放缩法,用放缩法证明不等式,在高中数学中占有一定的比重。【思想方法】题型1:定义法例1(11天津理,20)已知数列与满足:, ,且()求的值;()设,证明:是等比数列;(III)设证明:本小题主要考查
10、等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法.满分14分. (I)解:由 可得又(II)证明:对任意,得将代入,可得即又因此是等比数列.(III)证明:由(II)可得,于是,对任意,有将以上各式相加,得即,此式当k=1时也成立.由式得从而所以,对任意,对于n=1,不等式显然成立.所以,对任意题型2:反证法例3(2010江西理数理,22)证明以下命题:(1)对任一正整a,都存在整数b,c(bc),使得成等差数列。(2)存在无穷多个互不相似的三角形,其边长为正整数且成等差数列。【解析】作为压轴题,考查数学综合分析问题的能力以及创新能力
11、。 (1)考虑到结构要证,;类似勾股数进行拼凑。证明:考虑到结构特征,取特值满足等差数列,只需取b=5a,c=7a,对一切正整数a均能成立。结合第一问的特征,将等差数列分解,通过一个可做多种结构分解的因式说明构成三角形,再证明互不相似,且无穷。证明:当成等差数列,则,分解得:选取关于n的一个多项式,做两种途径的分解对比目标式,构造,由第一问结论得,等差数列成立,考察三角形边长关系,可构成三角形的三边。下证互不相似。任取正整数m,n,若m,相似:则三边对应成比例, 由比例的性质得:,与约定不同的值矛盾,故互不相似。 点评:本题证明推出的结果是与题设矛盾。例4(11陕西理,21)设函数定义在上,导
12、函数,(1)求的单调区间和最小值;(2)讨论与的大小关系;(3)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由【分析】(1)先求出原函数,再求得,然后利用导数判断函数的单调性(单调区间),并求出最小值;(2)作差法比较,构造一个新的函数,利用导数判断函数的单调性,并由单调性判断函数的正负;(3)存在性问题通常采用假设存在,然后进行求解;注意利用前两问的结论【解】(1),(为常数),又,所以,即,;,令,即,解得,当时,是减函数,故区间在是函数的减区间;当时,是增函数,故区间在是函数的增区间;所以是的唯一极值点,且为极小值点,从而是最小值点,所以的最小值是(2),设,则,
13、当时,即,当时,因此函数在内单调递减,当时,=0,;当时,=0, (3)满足条件的不存在证明如下:证法一 假设存在,使对任意成立,即对任意有 但对上述的,取时,有,这与左边的不等式矛盾,因此不存在,使对任意成立证法二 假设存在,使对任意成立,由(1)知,的最小值是,又,而时,的值域为,当时,的值域为,从而可以取一个值,使,即,,这与假设矛盾不存在,使对任意成立题型3:数学归纳法例5(11湖南理,22)已知函数() =,g ()=+。 ()求函数h ()=()-g ()的零点个数,并说明理由; ()设数列满足,证明:存在常数M,使得对于任意的,都有.解析:(I)由知,而,且,则为的一个零点,且在
14、内有零点,因此至少有两个零点解法1:,记,则。当时,因此在上单调递增,则在内至多只有一个零点。又因为,则在内有零点,所以在内有且只有一个零点。记此零点为,则当时,;当时,;所以,当时,单调递减,而,则在内无零点;当时,单调递增,则在内至多只有一个零点;从而在内至多只有一个零点。综上所述,有且只有两个零点。解法2:,记,则。当时,因此在上单调递增,则在内至多只有一个零点。因此在内也至多只有一个零点,综上所述,有且只有两个零点。(II)记的正零点为,即。(1)当时,由,即.而,因此,由此猜测:。下面用数学归纳法证明:当时,显然成立;假设当时,有成立,则当时,由知,因此,当时,成立。故对任意的,成立
15、。(2)当时,由(1)知,在上单调递增。则,即。从而,即,由此猜测:。下面用数学归纳法证明:当时,显然成立;假设当时,有成立,则当时,由知,因此,当时,成立。故对任意的,成立。综上所述,存在常数,使得对于任意的,都有.例6(2004年辽宁卷)已知函数,设,证明。证明:(1)当时,由题设,又,所以成立。当时,。而,所以,不等式也成立。(2)假设时,不等式成立,而,的对称轴是,则f(x)在上是增函数。由得即注意到结论右边的目标式,凑式变形,有可见时,不等式也成立。由(1)和(2)知,时,恒成立。点评:上述证明中,把数列值的大小变化与函数值的大小联系起来,再用函数的单调性渡过关卡,充分体现了数列与函
16、数的紧密关系。实际上,数列就是函数的特例。另外,上面第一步中,验证后,又验证,是为了能够对假设应用上函数的单调性,而之后的变形,只要明确目标式,就顺理成章了。题型4:放缩法在证明不等式中的妙用例7(11年湖北理17) 提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数()当时,求函数的表达式;()当车流密度为多大时,车流量(单位时间
17、内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时)本小题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力。(满分12分)解:()由题意:当;当再由已知得故函数的表达式为 ()依题意并由()可得当为增函数,故当时,其最大值为6020=1200;当时,当且仅当,即时,等号成立。所以,当在区间20,200上取得最大值综上,当时,在区间0,200上取得最大值。即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时。例8(1)已知ABC的三边长为a、b、c,求证:证明:由,及余弦定理有:, ,同理可得:, 。(2)设a,
18、b,c,d都是正数,abbcca1,证明:。证明:, ,当且仅当时取等号。点评:综上可知,用扩大或缩小分式的分母或分子的方法,用添项或合项的方法,用某些函数的单调性和函数值的有界性等方法进行放缩来推理有关不等式,都是一些常用的放缩手段,难点在于放缩程序的调控,应多思、多想、多练、多总结。题型5:典例不等式证明例9若,求证:,。 证法一:综合法 又 证法二:换元法、判别式法 设为方程的两根,则 (2) 将(2)代入(1),得,即, ,即 由,得 又 ,即 。 点评:换元法主要有三角代换、均值代换两种,在应用换元法时,要注意代换的等价性。如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用
19、判别式法证。 证法三:放缩法 于是有 从而 所以 (下略)。 点评:放缩法是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查。 证法四:比较法 , 对任意非负实数,有 ,即 (以下略)。 点评:比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 证法五:反证法 假设,则 又 因此,前后矛盾,故。 (以下略) 点评:有些不等式,如果不易从正面证明,可以考虑反证法。凡是含有“至少”、“唯一”或含有其他否定词的命题,适宜用反证法。例10、(11年安徽理19)()设证明,(),证明.本题考查不等式的基本性质,对数函数的性质
20、和对数换底公式等基本知识,考查代数式的恒等变形能力和推理论证能力。证明:(I)由于,所以将上式中的右式减左式,得从而所要证明的不等式成立.(II)设由对数的换底公式得于是,所要证明的不等式即为其中故由(I)立知所要证明的不等式成立。【思维总结】1反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理
21、、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。2归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。3综合法有时正好是分析过程的逆推,证法2虽然用综合法表述,但若不先用分析法思考,显然用综合法是无从下手的,多数情况下综合法的表述正是建立在分析法的基础之上,由此可见分析法这种思想,可以运用到几乎所有问题的解答之中。分析法的优点是利于思考,它方向明确思路自然,易于掌握,而综合法宜于表述,条理清晰,形式简捷,因而证明不等式时,常用分析法寻找思路,再用综合法来表述。分析法一般用于“证明不等式,综合法难以实施”的时候。.精品资料。欢迎使用。高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u