ImageVerifierCode 换一换
格式:PDF , 页数:11 ,大小:528.13KB ,
资源ID:20716      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-20716-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省南京市鼓楼区2020-2021学年高二下学期期末统考数学试题 扫描版含答案.pdf)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省南京市鼓楼区2020-2021学年高二下学期期末统考数学试题 扫描版含答案.pdf

1、高二(下)期末考试数学2021.6注意事项:1本试卷共 4 页,包括单项选择题(第 1 题 第 8 题)、多项选择题(第 9 题 第 12 题)、填空题(第 13 题 第 16 题)、解答题(第 17 题 第 22 题),共四个部分本试卷满分 150 分,考试时间 120 分钟.2答题前,考生务必将自己的姓名和考试证号填涂在答题卡上指定的位置上,考试结束后,请将答题卡交回.3回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号回答非选择题时,必须用黑色字迹的钢笔或0.5 毫米签字笔将答案写在答题卡上指定的位置(写在本试卷上无

2、效).4考生必须保证答题卡的整洁考试结束后,将试卷和答题卡一并交回.一、单项选择题:本大题共 8 小题,每小题 5 分,共计 40 分在每小题给出的四个选项中,有且只有一项是符合题目要求的,请把答案填涂在答题卡相应位置.1.已知集合 A 是函数 y=x-1 的定义域,B 是函数 y=lg(-x2-x+12)的定义域,则 A B=()A.-1,2B.1,3C.(-1,4)D.1,3)2.壹圆、贰圆、伍圆、拾圆的人民币各 1 张,可以组成不同的币值一共有()A.4 种B.7 种C.15 种D.18 种3.函数 f(x)=x2-2x的导函数为 f(x)=()A.2x-2xB.2x-2xln2C.2x

3、+2xD.2x+2xln24.2021 年是中国共产党白牛平诞,术子国古山歌给党听、毛主席派人来这 4 首独唱展演现从歌唱祖国、英雄赞歌、唱支山歌给党听、毛主席派人来这 4 首独唱歌曲和没有共产党就没有新中国人但歌曲。则不同的安排方法共有()安排演出,要求最后一首歌曲必须是合唱歌曲,则不同的安排方法共有()A.14 种B.48 种C.72 种D.120 种5.右图是 y=f(x)的导函数的图象,则下列四个判断中,正确的是()A.f(x)在 一 2,-1 上是增函数B.f(x)在区间(-1,2)上是增函数C.f(x)的最大值是 f(1)D.当 x=3 时,f(x)取极小值6.一批产品共 50 件

4、,其中有 3 件不合格品,从中任取 5 件,则恰有 1 件不合格品的概率是()A.C 13C 447C 550B.C 13C 550C.1-C 13C 447C 550D.1-C 13C 5507.已知随机变量 XB(3,13),那么 V(X)=()A.13B.23C.1D.38.已知集合 M=-1,1,那么“a-23”是“x M,4x-2x+1-a 0”的()A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件二、多项选择题:本大题共 4 小题,每小题 5 分,共计 20 分在每小题给出的四个选项中,有多项符合题目要求,全部选对得 5 分,部分选对得 2 分,不选或有选错

5、的得 0 分,请把答案填涂在答题卡相应位置.9.对于函数 f(x),若 f(x0)=2,则当 h 无限趋近于 0 时,在下列式子中无限趋近于 2 的式子有()A.f(x0+h)-f(x0)hB.f(x0+h)-f(x0)2hC.f(x0+2h)-f(x0)hD.f(x0+2h)-f(x0)2h10.在复平面内,一个平行四边形的 3 个顶点对应的复数分别是 0,1+2i,-2+i,则第四个顶点对应的复数可以是()A.3-iB.-1+3iC.3+iD.-3-i11.已知 a 0,b 0,a+2b=1,则()A.1a+8b 的最小值为 25B.a2+b2的最小值为55C.log2a+log2b 的最

6、小值为-3D.2a+4b的最小值为 2 212.已知定义域为(0,+)的函数 f(x)满足:x (0,+),f(5x)=5f(x);当 x (1,5时,f(x)=5-x,则()A.f(15)=0B.m Z,f(3m)=0C.函数 f(x)的值域为 0,+)D.n Z,f(5n+1)=2019三、填空题:本大题共 4 小题,每小题 5 分,共计 20 分不需要写出解答过程,请把答案填写在答题卡相应位置上.13.已知变量 y 与 x 线性相关,若 x=5,y=50,且 y 与 x 的线性回归直线的斜率为 6.5,则线性回归方程是.14.已知 p,q 为实数,1-i 是关于 x 的方程 x2+px+

7、q=0 的一个根,其中 i 是虚数单位,则 p+q=.15.某班 5 名同学去参加 4 个社团,每人只参加 1 个社团,每个社团都有人参加,则满足上述要求的不同方案共有种(用数字填写答案)16.已知随机变量 XN(3,2),若 P(X 4)=0.1,则 P(2 X 0(2)若函数 f(x)有两个零点,求 a 的取值范围.高二(下)期末考试数学2021.6注意事项:1本试卷共 4 页,包括单项选择题(第 1 题 第 8 题)、多项选择题(第 9 题 第 12 题)、填空题(第 13 题 第 16 题)、解答题(第 17 题 第 22 题),共四个部分本试卷满分 150 分,考试时间 120 分钟

8、.2答题前,考生务必将自己的姓名和考试证号填涂在答题卡上指定的位置上,考试结束后,请将答题卡交回.3回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号回答非选择题时,必须用黑色字迹的钢笔或0.5 毫米签字笔将答案写在答题卡上指定的位置(写在本试卷上无效).4考生必须保证答题卡的整洁考试结束后,将试卷和答题卡一并交回.一、单项选择题:本大题共 8 小题,每小题 5 分,共计 40 分在每小题给出的四个选项中,有且只有一项是符合题目要求的,请把答案填涂在答题卡相应位置.1.已知集合 A 是函数 y=x-1 的定义域,B 是函数

9、 y=lg(-x2-x+12)的定义域,则 A B=()A.-1,2B.1,3C.(-1,4)D.1,3)【答案】D【解析】A=1,+),B=(-4,3),故 A B=1,3)2.壹圆、贰圆、伍圆、拾圆的人民币各 1 张,可以组成不同的币值一共有()A.4 种B.7 种C.15 种D.18 种【答案】C【解析】1-18 元除了 4,9,14 不可表示,其余都可以,所以共 18-3=15 种3.函数 f(x)=x2-2x的导函数为 f(x)=()A.2x-2xB.2x-2xln2C.2x+2xD.2x+2xln2【答案】B【解析】f(x)=2x-2xln24.2021 年是中国共产党白牛平诞,术

10、子国古山歌给党听、毛主席派人来这 4 首独唱展演现从歌唱祖国、英雄赞歌、唱支山歌给党听、毛主席派人来这 4 首独唱歌曲和没有共产党就没有新中国人但歌曲。则不同的安排方法共有()安排演出,要求最后一首歌曲必须是合唱歌曲,则不同的安排方法共有()A.14 种B.48 种C.72 种D.120 种【答案】D【解析】C 12A35=1205.右图是 y=f(x)的导函数的图象,则下列四个判断中,正确的是()A.f(x)在 一 2,-1 上是增函数B.f(x)在区间(-1,2)上是增函数C.f(x)的最大值是 f(1)D.当 x=3 时,f(x)取极小值【答案】B【解析】由图像知 B 正确6.一批产品共

11、 50 件,其中有 3 件不合格品,从中任取 5 件,则恰有 1 件不合格品的概率是()A.C 13C 447C 550B.C 13C 550C.1-C 13C 447C 550D.1-C 13C 550【答案】A【解析】由超几何分布可知选 A7.已知随机变量 XB(3,13),那么 V(X)=()A.13B.23C.1D.3【答案】B【解析】二项分布 V(X)=np(1-p)=238.已知集合 M=-1,1,那么“a-23”是“x M,4x-2x+1-a 0”的()A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件【答案】A【解析】a (4x-2x+1)min=-1,故

12、选 A二、多项选择题:本大题共 4 小题,每小题 5 分,共计 20 分在每小题给出的四个选项中,有多项符合题目要求,全部选对得 5 分,部分选对得 2 分,不选或有选错的得 0 分,请把答案填涂在答题卡相应位置.9.对于函数 f(x),若 f(x0)=2,则当 h 无限趋近于 0 时,在下列式子中无限趋近于 2 的式子有()A.f(x0+h)-f(x0)hB.f(x0+h)-f(x0)2hC.f(x0+2h)-f(x0)hD.f(x0+2h)-f(x0)2h【答案】AD【解析】B=12 f(x0)=1,D=2f(x0)=4,AD 正确10.在复平面内,一个平行四边形的 3 个顶点对应的复数分

13、别是 0,1+2i,-2+i,则第四个顶点对应的复数可以是()A.3-iB.-1+3iC.3+iD.-3-i【答案】BCD【解析】已知对应点为(0,0),(1,2),(-2,1),所以第四个点为(3,1),(-3,-1),(-1,3)所以选 BCD11.已知 a 0,b 0,a+2b=1,则()A.1a+8b 的最小值为 25B.a2+b2的最小值为55C.log2a+log2b 的最小值为-3D.2a+4b的最小值为 2 2【答案】AD【解析】对于 A:1a+8b=(1a+8b)(a+2b)=17+2ba+8ab 17+8=25,正确对于 B:a2+b2=(1-2b)2+b2=5b2-4b+

14、1 15,错误对于 C:a+2b=1 2 2ab,ab 18,log2a+log2b=log2ab-3,错误对于 D:2a+4b 2 2a+2b=2 2,正确12.已知定义域为(0,+)的函数 f(x)满足:x (0,+),f(5x)=5f(x);当 x (1,5时,f(x)=5-x,则()A.f(15)=0B.m Z,f(3m)=0C.函数 f(x)的值域为 0,+)D.n Z,f(5n+1)=2019【答案】AC【解析】对于 A:f(15)=15 f(1)=125 f(5)=0,正确对于 B:m=1,f(3)=2 0,错误对于 C:x (1,5,f(x)0,4),以此类推 x (5n,5n

15、+1,f(x)(0,4 5n,因为 n 可以无穷大,所以值域为 0,+),正确对于 D:f(5n+1)=5nf(1+15n)=5n(4-15n)=4 5n-1=2019,5n=505,无整数解,错误三、填空题:本大题共 4 小题,每小题 5 分,共计 20 分不需要写出解答过程,请把答案填写在答题卡相应位置上.13.已知变量 y 与 x 线性相关,若 x=5,y=50,且 y 与 x 的线性回归直线的斜率为 6.5,则线性回归方程是.【答案】y=6.5x+17.5【解析】回归方程过(x,y),所以 y-50=6.5(x-5),化简得 y=6.5x-17.514.已知 p,q 为实数,1-i 是

16、关于 x 的方程 x2+px+q=0 的一个根,其中 i 是虚数单位,则 p+q=.【答案】0【解析】将 1-i 代入方程得-2i+p-pi+q=0,所以 p+q=015.某班 5 名同学去参加 4 个社团,每人只参加 1 个社团,每个社团都有人参加,则满足上述要求的不同方案共有种(用数字填写答案)【答案】240【解析】C 25A44=24016.已知随机变量 XN(3,2),若 P(X 4)=0.1,则 P(2 X 4)=.【答案】0.8【解析】P(2 X 3.841所以有 95%的把握认为“已观看觉醒时代”与“是年轻人”有关系(2)略18.我们曾用组合模型发现了组合恒等式 C mn+1=C

17、 mn+C m-1n,这里所使用的方法,实际上是将一个量用两种方法分别算一次,由结果相同来得到等式,这是一种非常有用的思想方法,叫做“算两次”,对此,我们并不陌生,例如列方程时就要从不同的侧面列出表示同一个量的代数式.(1)某医院有内科医生 8 名,外科医生 x(x 3)名,现要派 3 名医生参加赈灾医疗队,已知某内科医生必须参加的选法有 66 种,求 x 的值;(2)化简:C 2nC n-1n+C 3nC n-2n+.+C n-1nC 2n+C nnC 1n【解析】(1)C27+x=66,解得 x=5(2)原式可以看作(1+x)n(1+x)n展开式中 xn+1的系数减 1所以原式=C n+1

18、2n-119.如图,在直三棱柱 ABC 一 A1B1C1中,AB=10,AC=6,BC=8,点 E,F 分别是 BB1,AA1的中点.(1)证明:B1F/平面 ACE;(2)已知二面角 E-AC-B 的大小为 30,求三棱锥 B-ACE 的体积 V【解析】(1)因为直三棱柱 ABC 一 A1B1C1,E,F 分别是 BB1,AA1的中点,所以 B1E FA所以四边形 B1EAF 是平行四边形,所以 B1F/AE,又因为 AE 面 ACE,B1F 面 ACE所以 B1F/平面 ACE(2)因为 AB=10,AC=6,BC=8,所以 AC BC,又因为直三棱柱 ABC 一 A1B1C1,所以 CC

19、1 面 ACB,又 AC 面 ACB,所以 AC CC1.因为 CC1 BC=C,所以 AC 面BCC1B1,又因为 CE 面 BCC1B1,所以 AC CE所以二面角 E-AC-B 为 BCE,所以 BE=83,V=13 83 24=64 3320.己知一位篮球投手投中两分球的概率为 23,投中三分球的概率为 25,每次投中两分球、三分球分别得 2 分、3 分,未投中均得 0 分,每次投篮的结果相互独立,该投手进行 3 次投篮:包括两分球投篮 1 次、三分球投篮 2 次.(1)求“该投手投中两分球且恰好投中三分球 1 次”的概率;(2)求该投手的总得分 X 的分布列和数学期望.【解析】(1)

20、P=23 C 12 25 35=825(2)P(X=0)=13 35 35=325P(X=2)=23 35 35=625P(X=3)=13 C 12 35 25=425P(X=5)=23 C 12 35 25=825P(X=6)=13 25 25=475P(X=8)=23 25 25=875X023568P325625425825475875E(X)=561521.已知函数 f(x)=x|x-k|+2x,k R(1)判断 f(x)的奇偶性并说明理由;(2)如果当 x 0,2 时,f(x)的最大值是 6,求 k 的值.【解析】(1)k=0 奇函数.k 0,非奇非偶(2)x|x-k|+2x 6 对

21、 x 0,2 恒成立且能取等化简的 x-6x+2 k x+6x-2所以 1 k 3,即 k=1 或 322.已知函数 f(x)=ex-(a+1)x-1(1)当 a=2,x 3 时,求证:f(x)0(2)若函数 f(x)有两个零点,求 a 的取值范围.【解析】(1)f(x)=ex-3 0,f(x)f(3)=e3-10 0(2)f(0)=0,f(x)=ex-(a+1)当 a+1 0 时,f(x)0,f(x)在 R 上单调增,至多一个零点,不符题意舍去;当 a+1 0 时,f(x)=0,解得 x=ln(a+1)所以 f(x)在(-,ln(a+1)(ln(a+1),+)1 当 a+1=1 时,0 是唯一零点,舍去;2 当 a+1 1,即 a 0 时,ln(a+1)0,f(ln(a+1)0,所以在(-1a+1,ln(a+1)上又存在一个零点;3 当 a+1 1,即 a 0 时,ln(a+1)0,f(ln(a+1)x24+x+1-(a+1)x-1=x24-ax 0,解得 x 4a所以 f(4a)0,f(x)在(ln(a+1),4a)又存在一个零点;综上,a (-1,0)(0,+)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3