ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:143.50KB ,
资源ID:202607      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-202607-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《优选整合》人教A版高中数学必修一 3-2-1 几类不同增长的函数模型 学案 .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《优选整合》人教A版高中数学必修一 3-2-1 几类不同增长的函数模型 学案 .doc

1、 3.2.1几类不同增长的函数模型(学案)一、学习目标1理解直线上升、指数爆炸、对数增长的含义(重点)2区分指数函数、对数函数以及幂函数增长速度的差异(易混点)3会选择适当的函数模型分析和解决一些实际问题(难点)二、自主学习 教材整理几类不同增长的函数模型阅读教材P98P101,完成下列问题1三种函数模型的性质函数性质yax(a1)ylogax(a1)yxn(n0)在(0,)上的增减性增函数增函数增函数图象的变化随x的增大逐渐与y轴平行随x的增大逐渐与x轴平行随n值的不同而不同2.三种函数增长速度的比较(1)在区间(0,)上,函数yax(a1),ylogax(a1)和yxn(n0)都是增函数,

2、但增长进度不同,且不在同一个“档次”上(2)随着x的增大,yax(a1)的增长速度越来越快,会超过并远远大于yxn(n0)的增长速度,而ylogax(a1)的增长速度越来越慢(3)存在一个x0,当xx0时,有axxnlogax.三、合作探究 例1. (1)下列函数中,增长速度最快的是() Ay2 016x Byx2 016 Cylog2 016x Dy2 016x(2)四个自变量y1,y2,y3,y4随变量x变化的数据如下表:x151015202530y1226101226401626901y22321 02432 7681.051063.361071.07109y32102030405060

3、y424.3225.3225.9076.3226.6446.907则关于x呈指数型函数变化的变量是_【自主解答】(1)比较幂函数、指数函数与对数函数可知,指数函数增长速度最快,故选A.(2)以爆炸式增长的变量呈指数函数变化从表格中可以看出,四个变量y1,y2,y3,y4均是从2 变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化故填y2.【答案】(1)A(2)y2归纳总结:1指数函数模型yax(a1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,形象地称为“指数爆炸”2对数函数模型ylogax(a1)的增长特

4、点是随着自变量的增大,函数值增大的速度越来越慢3幂函数模型yxn(n0)的增长速度介于指数增长和对数增长之间例2. 函数f(x)2x和g(x)x3的图象如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1x2.(1)请指出图中曲线C1,C2分别对应的函数;(2)结合函数图象,判断f(6),g(6),f(2 016),g(2 016)的大小【自主解答】(1)C1对应的函数为g(x)x3,C2对应的函数为f(x)2x.(2)f(1)g(1),f(2)g(2),f(9)g(9),f(10)g(10),1x12,9x210,x16x2,2 016x2.从图象上可以看出,当x1xx2

5、时,f(x)g(x),f(6)g(6);当xx2时,f(x)g(x),f(2 016)g(2 016)又g(2 016)g(6),f(2 016)g(2 016)g(6)f(6) 归纳总结:根据函数图象判断增长函数模型时,通常是根据函数图象上升的快慢来判断,即随着自变量的增大,图象最“陡”的函数是指数函数,图象趋于平缓的函数是对数函数,中间的是幂函数.例3. 某跨国饮料公司在对全世界所有人均GDP(即人均纯收入)在0.58千美元的地区销售该公司A饮料的情况调查时发现:该饮料在人均GDP处于中等的地区销售量最多,然后向两边递减(1)下列几个模拟函数中:yax2bx;ykxb;ylogaxb;ya

6、xb(x表示人均GDP,单位:千美元,y表示年人均A饮料的销售量,单位:L)用哪个模拟函数来描述人均A饮料销售量与地区的人均GDP关系更合适?说明理由;(2)若人均GDP为1千美元时,年人均A饮料的销售量为2 L,人均GDP为4千美元时,年人均A饮料的销售量为5 L,把(1)中你所选的模拟函数求出来,并求出各个地区中,年人均A饮料的销售量最多是多少?【自主解答】(1)用来模拟比较合适因为该饮料在人均GDP处于中等的地区销售量最多,然后向两边递减而,表示的函数在区间上是单调函数,所以,都不合适,故用来模拟比较合适(2)因为人均GDP为1千美元时,年人均A饮料的销量为2升;人均GDP为4千美元时,

7、年人均A饮料的销量为5升,把x1,y2;x4,y5代入到yax2bx,得解得a,b,所以函数解析式为yx2x.(x0.5,8)yx2x2,当x时,年人均A饮料的销售量最多是 L.归纳总结:不同的函数模型能刻画现实世界中不同的变化规律1线性函数增长模型适合于描述增长速度不变的变化规律2指数函数增长模型适合于描述增长速度急剧的变化规律3对数函数增长模型适合于描述增长速度平缓的变化规律4幂函数增长模型适合于描述增长速度一般的变化规律四、学以致用 1下列函数中随x的增大而增长速度最快的是()Ayex By100ln x Cyx100 Dy1002x【答案】A2函数f(x)lg x,g(x)0.3x1的

8、图象如图322所示(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较)图322【解】(1)C1对应的函数为g(x)0.3x1,C2对应的函数为f(x)lg x.(2)当xf(x);当x1xg(x);当xx2时,g(x)f(x);当xx1或xx2时,f(x)g(x)3某化工厂开发研制了一种新产品,在前三个月的月生产量依次为100t,120t,130t.为了预测今后各个月的生产量,需要以这三个月的月产量为依据,用一个函数来模拟月产量y(t)与月序数x之间的关系对此模拟函数可选用二次函数yf(x)ax2bx

9、c(a,b,c均为待定系数,xN*)或函数yg(x)pqxr(p,q,r均为待定系数,xN*),现在已知该厂这种新产品在第四个月的月产量为137t,则选用这两个函数中的哪一个作为模拟函数较好?【解】根据题意可列方程组:解得所以yf(x)5x235x70.同理yg(x)800.5x140.再将x4分别代入与式得:f(4)54235470130(t),g(4)800.54140135(t)与f(4)相比,g(4)在数值上更为接近第四个月的实际月产量,所以式作为模拟函数比式更好,故选用函数yg(x)pqxr作为模拟函数较好.五、自主小测 1如表是函数值y随自变量x变化的一组数据,由此判断它最可能的函

10、数模型() x45678910y15171921232527A.一次函数模型 B二次函数模型C指数函数模型 D对数函数模型2下列函数中,随x的增大,增长速度最快的是()Ay1 Byx Cy3x Dylog3x3某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润与时间的关系,可选用()A一次函数 B二次函数C指数型函数 D对数型函数4生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在图中请选择与容器相匹配的图象,A对应_;B对应_;C对应_;D对应_. 5函数f(x)1.1

11、x,g(x)ln x1,h(x)x的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a,b,c,d,e为分界点) 参考答案1.【解析】自变量每增加1函数值增加2,函数值的增量是均匀的,故为一次函数模型故选A. 【答案】A2.【解析】结合函数y1,yx,y3x及ylog3x的图象可知,随着x的增大,增长速度最快的是y3x. 【答案】C3.【解析】结合“直线上升,对数增长,指数爆炸”可知,对数型函数符合题设条件,故选D.【答案】D4.【解析】A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快慢快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器快,与(3)对应,D容器慢,与(2)对应 【答案】(4)(1)(3)(2)5.【解】由指数爆炸、对数增长、幂函数增长的差异可得曲线C1对应的函数是f(x)1.1x,曲线C2对应的函数是h(x)x,曲线C3对应的函数是g(x)ln x1.由题图知,当xh(x)g(x);当1xg(x)h(x);当exf(x)h(x);当axh(x)f(x);当bxg(x)f(x);当cxf(x)g(x);当xd时,f(x)h(x)g(x)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3