1、题型一合情推理与演绎推理1归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明2演绎推理与合情推理不同,它是由一般到特殊的推理,是数学中证明的基本推理形式,也是公理化体系所采用的推理形式另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性例1 (1)有一个奇数列1,3,5,7,9,现在进行如下分组:第一组含一个数1;第二组含两个数3,5;第三组含三个数7,9,11;第四组含四个数13,15,17,19;试观察每组内各数之和f(n)(nN*)与组的编号数n
2、的关系式为_(2)在平面几何中,对于RtABC,ACBC,设ABc,ACb,BCa,则a2b2c2;cos2Acos2B1;RtABC的外接圆半径为r.把上面的结论类比到空间写出相类似的结论;如果你能证明,写出证明过程;如果在直角三角形中你还发现了异于上面的结论,试试看能否类比到空间?(1)答案f(n)n3解析由于113,35823,79112733,131517196443,猜想第n组内各数之和f(n)与组的编号数n的关系式为f(n)n3.(2)解选取3个侧面两两垂直的四面体作为直角三角形的类比对象设3个两两垂直的侧面的面积分别为S1,S2,S3,底面面积为S,则SSSS2.设3个两两垂直的
3、侧面与底面所成的角分别为,则cos2cos2cos21.设3个两两垂直的侧面形成的侧棱长分别为a,b,c,则这个四面体的外接球的半径为R.反思与感悟(1)归纳推理中有很大一部分题目是数列内容,通过观察给定的规律,得到一些简单数列的通项公式是数列中的常见方法(2)类比推理重在考查观察和比较的能力,题目一般情况下较为新颖,也有一定的探索性跟踪训练1(1)下列推理是归纳推理的是_,是类比推理的是_A、B为定点,若动点P满足|PA|PB|2a|AB|,则点P的轨迹是椭圆;由a11,an13an1,求出S1,S2,S3,猜想出数列的通项an和Sn的表达式;由圆x2y21的面积Sr2,猜想出椭圆的面积Sa
4、b;科学家利用鱼的沉浮原理制造潜艇答案(2)设等差数列an的前n项和为Sn,则S4,S8S4,S12S8,S16S12成等差数列类比以上结论有:设等比数列bn的前n项积为Tn, 则T4,_,_,成等比数列答案解析等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列bn的前n项积为Tn,则T4,成等比数列题型二综合法与分析法综合法和分析法是直接证明中的两种最基本的证明方法,但两种证明方法思路截然相反,分析法既可用于寻找解题思路,也可以是完整的证明过程,分析法与综合法可相互转换,相互渗透,要充分利用这一辩证关系,在解题中综合法和分析法联合运用,转换解题思路,增加解题途径
5、一般以分析法为主寻求解题思路,再用综合法有条理地表示证明过程例2用综合法和分析法证明已知(0,),求证:2sin 2.证明(分析法)要证明2sin 2成立只要证明4sin cos .(0,),sin 0.只要证明4cos .上式可变形为44(1cos )1cos 0,4(1cos )24,当且仅当cos ,即时取等号44(1cos )成立不等式2sin 2成立(综合法)4(1cos )4,(1cos 0,当且仅当cos ,即时取等号)4cos .(0,),sin 0.4sin cos .2sin 2.跟踪训练2 求证:2cos().证明sin(2)2cos()sin sin()2cos()si
6、n sin()cos cos()sin 2cos()sin sin()cos cos()sin sin()sin ,两边同除以sin 得2cos().题型三反证法反证法是一种间接证明命题的方法,它从命题结论的反面出发引出矛盾,从而肯定命题的结论反证法的理论基础是互为逆否命题的等价性,从逻辑角度看,命题:“若p则q”的否定是“若p则綈q”,由此进行推理,如果发生矛盾,那么就说明“若p则綈q”为假,从而可以导出“若p则q”为真,从而达到证明的目的例3 若x,y都是正实数,且xy2,求证:2或2中至少有一个成立证明假设2和0且y0,所以1x2y且1y2x,两式相加,得2xy2x2y,所以xy2.这与已知xy2矛盾故2与2至少有一个成立反思与感悟反证法常用于直接证明困难或以否定形式出现的命题;涉及“都是”“都不是”“至少”“至多”等形式的命题时,也常用反证法跟踪训练3已知:ac2(bd)求证:方程x2axb0与方程x2cxd0中至少有一个方程有实数根证明假设两方程都没有实数根,则1a24b0与2c24d0,有a2c22ac,即ac2(bd),与已知矛盾,故原命题成立