收藏 分享(赏)

《优质赛课》数学人教B版必修4教案:1.3.3 已知三角函数值求角 WORD版含答案.doc

上传人:高**** 文档编号:200929 上传时间:2024-05-26 格式:DOC 页数:2 大小:85KB
下载 相关 举报
《优质赛课》数学人教B版必修4教案:1.3.3 已知三角函数值求角 WORD版含答案.doc_第1页
第1页 / 共2页
《优质赛课》数学人教B版必修4教案:1.3.3 已知三角函数值求角 WORD版含答案.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1.3.3 已知三角函数值求角一、教学目标 会由已知三角函数值求角。二、教学重点、难点 重点是已知三角函数值求角,难点是: 根据范围确定有已知三角函数值的角; 对符号arcsinx、arccosx、arctanx的正确认识; 用符号arcsinx、arccosx、arctanx表示所求的角。三、教学方法 在旧问题的基础上,不断提出新的问题,让学生在探索中获得新知识。四、教学过程教学环节教学内容师生互动设计意图复习引入复习在初中已知锐角三角函数值求锐角的例子。提出问题:如果将所给角的范围扩大,问题应该怎么处理?复习旧知识,引入新问题应用举例例1、已知,(1)若,求x;(2)若,求x;(3)若,求

2、x的取值集合。1、学生回答,老师板书,老师及时指出学生解法中的不足。2、进一步将问题深化: 若,怎么办? 若sinx=0.3,怎么办?3、对于问题,学生可能会有三种答案:数学用表、计算器、反正弦,指出前两者不是精确值,应使用第三种。从学生熟悉的问题出发,逐渐增大难度,让学生在不断的探索中获得新知识。概念形成若sin=t,则=arcsint,其中,t-1 , 1。1、让学生思考对、t范围进行限制的理由。2、用反函数的知识解释范围的由来。3、和学生一起,写出反余弦、反正切的相关结论。4、完成sinx=0.3的处理。强化角的表示,淡化反三角函数概念。应用举例例2、(1)已知cosx=0.5,求x;(

3、2)已知,求x的取值集合;(3)已知tanx=,求x;(4)已知tanx=1.23,求x的取值集合。巩固练习:练习A 1、3、5指导学生完成,并让学生思考解此类题的一般步骤。让学生尝试解决“已知余弦值、正切值求角”的问题,并将解题过程程序化。归纳小结已知三角函数值t求角的解题步骤:(1)确定角所在的象限(有时不止一个象限)。(2)求上的角:1先求出与对应的锐角;2根据所在的象限,求出上的角:若在第一象限,则=若在第二象限,则=-若在第三象限,则=+若在第四象限,则=2-(3)写出所有与终边相同的角。布置作业1、练习A 2、4; 练习B 1、2、32、思考:已知余切、正割、余割的三角函数值,怎么求角?巩固本节课所学,并引导学生做深一步的思考。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3