ImageVerifierCode 换一换
格式:PPT , 页数:50 ,大小:1,008.50KB ,
资源ID:200544      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-200544-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2013届新课标高中数学(理)第一轮总复习第4章 第31讲 正、余弦定理及其应用.ppt)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2013届新课标高中数学(理)第一轮总复习第4章 第31讲 正、余弦定理及其应用.ppt

1、1.在ABC中,已知b=4,c=2,A=120,则a等于 _2 212222cos1481224 32()2842 21.abcbcAa 由余弦定理得,所以解析:2.在ABC中,a=8,B=60,C=75,则b等于 _4 6607545.8sin60454 6BCAbasinBsinAbsin由,得由正弦定理得解,即析:3.sinAcosBcosCABCabc若,则的形状为V32324.ABCbcA已知的面积为,且,则V等腰直角三角形1sin23123sin223sin60120.2ABCSbcAAAAV因为,所以,所以,所以或解析:60或1205.在高出地面30 m的小山顶上建造一座电视塔C

2、D(如图),今在距离B点60 m的地面上取一点A,若测得CD所张的角为45,则该电视塔的高度是_m.150 1tantan211302tan(45)316012150 mBACBADCDBACCD 因为,所以解析:三角形解的个数的判定【例1】在ABC中,若a18,b24,A44,则 此 三 角 形 解 的 情 况 为_sinsin44sin4522412 218242sinbAbbbAab 因为,所以,所以此三角形【解析】有两解已知两边a、b和其中一边a的对角A(A为锐角),解三角形的解的情况:absinA absinA bsinAac2,C为直角a2b2c2,C为钝角a2b2c2.41sin

3、()sinsincos.222ABCABCABCABC特别提醒:求解三角形中的问题时,一定要注意 这个特殊性:,求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化5解三角形常见类型及解法在三角形ABC的六个元素(三个角A、B、C,三条边a、b、c)中要知三个(除三个角外)才能求解,常见类型及其解法见下表:已知条件应用定理一般解法一边和两角(如:a,B,C)正弦定理由ABC,求角A;由正弦定理求出b与c.在有解时只有一解已知条件应用定理一般解法两边和夹角(如:a,b,C)正弦定理余弦定理由余弦定理求第三边c;由正弦定理求出小边所对的角;再由ABC求另一角在有解时只有一解三

4、边(如:a,b,c)余弦定理由余弦定理求出角A、B;再利用ABC求出角C;在有解时只有一解两边和其中一边的对角(如:a,b,A)正弦定理余弦定理由正弦定理求出角B;由ABC,求出角C;再利用正弦定理或余弦定理求c.可有两解、一解或无解6.应用正、余弦定理解三角形应用题的一般步骤:(1)理解题意,分清已知与未知,画出示意图;(2)依据已知条件和求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解三角形的数学模型;(3)根据三角形已知的边角条件合理选择正、余弦定理解三角形,从而得到数学模型的解;(4)检验上述所求的解是否具有实际意义,从而最终得出实际问题的解7解三角形应用题常见的几种情况:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解(2)实际问题经抽象概括后,已知量与未知量涉及到两个(或两个以上)三角形,这时需作出这些三角形,先解够条件的三角形,再逐步求出其他三角形中的解有时需设出未知量,从几个三角形中列出方程,解方程得出所要求的解

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3