1、人教版八年级数学上册第十三章轴对称定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,RtACB中,ACB90,ABC的角平分线AD、BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于
2、点H,则下列结论:APB135;BFBA;PHPD;连接CP,CP平分ACB,其中正确的是()ABCD2、下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )ABCD3、如图,A30,C60,ABC 与ABC关于直线l对称,则B度数为()ABCD4、下列命题中,属于假命题的是()A边长相等的两个等边三角形全等B斜边相等的两个等腰直角三角形全等C周长相等的两个三角形全等D底边和顶角对应相等的两个等腰三角形全等5、如图,已知ABC,ABBC,用尺规作图的方法在BC上取一点P,使得PA+PCBC,则下列选项正确的是( )ABCD6、如图,在中,则()ABCD7、自
3、新冠肺炎疫情发生以来,全国人民共同抗疫下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()ABCD8、如图,在中,DE是AC的垂直平分线,的周长为13cm,则的周长为()A16cmB13cmC19cmD10cm9、点 A (2,-1)关于 y 轴对称的点 B 的坐标为()A(2, 1)B(-2,1)C(2,-1)D(-2,- 1)10、若点A(1+m,1n)与点B(3,2)关于y轴对称,则m+n的值是()A5B3C3D1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,等边三角形ABC的边长为2,D,E是AC,BC上两个动点,且ADCE,
4、AE,BD交于点F,连接CF,则CF长度的最小值为_2、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边ABC和等边CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ则下列结论:ADBE;PQAE;APBQ;DEDP其中正确的有_(填序号)3、已知ABC是等腰三角形若A=40,则ABC的顶角度数是_4、如图,在ABC中,AB=AC,BAC = 36,DE是线段AC的垂直平分线,若BE=,AE=,则用含、的代数式表示ABC的周长为_5、如图,一个等腰直角三角尺的两个顶点恰好落在笔记本的两条横线a,b上若,则_三、解答题(5小题,每小题10分,共计50
5、分)1、已知:如图,是的角平分线,于点 ,于点,求证:是的中垂线 2、如图,在ABC中,ACB=90,D是BC延长线上一点,E是AB上的一点,且在BD的垂直平分线EG上,DE交AC于点F,求证:点E在AF的垂直平分线上3、如图,在四边形中,分别是,上的点,连接,(1)如图,求证:;(2)如图,当周长最小时,求的度数;(3)如图,若四边形为正方形,点、分别在边、上,且,若,请求出线段的长度4、如图,中,点在边上,求证5、已知,ABC三条边的长分别为(1)若,当ABC为等腰三角形,求ABC的周长(2)化简:-参考答案-一、单选题1、D【解析】【分析】根据三角形内角和定理以及角平分线定义判断;根据全
6、等三角形的判定和性质判断;根据角平分线的判定与性质判断【详解】解:在ABC中,ACB=90,BAC+ABC=90,又AD、BE分别平分BAC、ABC,BAD+ABE=(BAC+ABC)=(180-ACB)=(180-90)=45,APB=135,故正确BPD=45,又PFAD,FPB=90+45=135,APB=FPB,又ABP=FBP,BP=BP,ABPFBP(ASA),BAP=BFP,AB=FB,PA=PF,故正确在APH和FPD中,APH=FPD=90,PAH=BAP=BFP,PA=PF,APHFPD(ASA),PH=PD,故正确连接CP,如下图所示:ABC的角平分线AD、BE相交于点P
7、,点P到AB、AC的距离相等,点P到AB、BC的距离相等,点P到BC、AC的距离相等,点P在ACB的平分线上,CP平分ACB,故正确,综上所述,均正确,故选:D【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理掌握相关性质是解题的关键2、B【解析】【分析】结合轴对称图形的概念进行求解即可【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确故选:B【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合3、C【解析】【分
8、析】由已知条件,根据轴对称的性质可得CC30,利用三角形的内角和等于180可求答案【详解】ABC与ABC关于直线l对称,AA30,CC60;B18030-6090故选:C【考点】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是1804、C【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,等边三角形的性质,直角三角形的性质,逐一判断选项,即可得到答案【详解】解:A、边长相等的两个等边三角形全等,是真命题,故A不符合题意;B、斜边相等的两个等腰直角三角形全等,是真命题,故B不符合题意;C、周长相等的两个三角形不一定全等,原命题是假命题,故C符合题意
9、;D、底边和顶角对应相等的两个等腰三角形全等,是真命题,故D不符合题意故选:C【考点】本题考查了命题与定理,牢记有关的性质、定义及定理是解决此类题目的关键5、B【解析】【详解】解:PB+PC=BC,PA+PC=BC,PA=PB,根据线段垂直平分线定理的逆定理可得,点P在线段AB的垂直平分线上,故可判断B选项正确故选B6、D【解析】【分析】先根据等腰三角形的性质得到B的度数,再根据平行线的性质得到BCD.【详解】解:AB=AC,A=40,B=ACB=70,CDAB,BCD=B=70,故选D.【考点】本题考查了等腰三角形的性质和平行线的性质,掌握等边对等角是关键,难度不大.7、D【解析】【分析】根
10、据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可【详解】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意故选:D【考点】本题考查了轴对称图形,熟练掌握轴对称图形的定义是解题的关键8、C【解析】【分析】根据线段垂直平分线性质得出,求出AC和的长,即可求出答案【详解】解:DE是AC的垂直平分线,的周长为13cm,的周长为,故选:C【考点】考查垂直平分线的性质,三角形周长问题,解题的关键是掌握垂直平分线的性质9、D【解析】【分析】根据点坐标关于轴对称的变换规律即可得【
11、详解】解:点坐标关于轴对称的变换规律:横坐标互为相反数,纵坐标相同则点关于轴对称的点的坐标为,故选:D【考点】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于轴对称的变换规律是解题关键10、D【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得【详解】点A(1+m,1n)与点B(3,2)关于y轴对称,1+m=3,1n=2,解得:m=2,n=1,所以m+n=21=1,故选D【考点】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键二、填空题1、【解析】【分析】由ADCE,可知点F的路径是一段弧
12、,即当点D运动到AC的中点时,CF长度的最小,即点F为ABC的中心,过B作于,过A点作交于点,则可知,由ABC是等边三角形,BC2,得,进而可知,则CF长度的最小值是【详解】解:ADCE,点F的路径是一段弧,当点D运动到AC的中点时,CF长度的最小,即点F为ABC的中心,过B作于,过A点作交于点,ABC是等边三角形,BC2,CF长度的最小值是故答案为:【考点】本题考查等边三角形的性质,三角形中心的定义,求线段的最小值,解题的关键是能够构造合适的辅助线求解2、【解析】【分析】根据等边三角形的三边都相等,三个角都是60,可以证明ACD与BCE全等,根据全等三角形对应边相等可得ADBE,所以正确,对
13、应角相等可得CADCBE,然后证明ACP与BCQ全等,根据全等三角形对应边相等可得PCPQ,从而得到CPQ是等边三角形,再根据等腰三角形的性质可以找出相等的角,从而证明PQAE,所以正确;根据全等三角形对应边相等可以推出APBQ,所以正确,根据可推出DPEQ,再根据DEQ的角度关系DEDP【详解】解:等边ABC和等边CDE,ACBC,CDCE,ACBECD60,180ECD180ACB,即ACDBCE,在ACD与BCE中, ,ACDBCE(SAS),ADBE,故小题正确;ACDBCE(已证),CADCBE,ACBECD60(已证),BCQ18060260,ACBBCQ60,在ACP与BCQ中,
14、 ,ACPBCQ(ASA),APBQ,故小题正确;PCQC,PCQ是等边三角形,CPQ60,ACBCPQ,PQAE,故小题正确;ADBE,APBQ,ADAPBEBQ,即DPQE,DQEECQ+CEQ60+CEQ,CDE60,DQECDE,故小题错误综上所述,正确的是故答案为:【考点】本题考查了等边三角形的性质,全等三角形的判定与性质,以及平行线的判定,需要多次证明三角形全等,综合性较强,但难度不是很大,是热点题目,仔细分析图形是解题的关键3、40或100【解析】【分析】分A为三角形顶角或底角两种情况讨论,即可求解【详解】解:当A为三角形顶角时,则ABC的顶角度数是40;当A为三角形底角时,则A
15、BC的顶角度数是180-40-40=100;故答案为:40或100【考点】本题考查了等腰三角形的性质,此类题目,难点在于要分情况讨论4、2a+3b【解析】【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,BAC=36,所以易证AE=CE=BC=b,从可知ABC的周长为:AB+AC+BC=2a+3b【详解】解:ABAC,BEa,AEb,ACABab,DE是线段AC的垂直平分线,AECEb,ECABAC36,BAC36,ABCACB72,BCEACBECA36,BEC180ABCECB72,CEBCb,ABC的周长为:ABACBC2a3b故答案为2a+3b【考点】本题考查线段
16、垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AECEBC,本题属于中等题型5、25【解析】【分析】求出3=25,根据平行线的性质可得出【详解】解:如图,ABC是等腰直角三角形,BAC=45,即 1=203=25 2=3=25故答案为:25【考点】此题主要考查了平行线的性质和等腰直角三角形的性质,熟练掌握蜀道难突然发觉解答此题的关键三、解答题1、见解析.【解析】【分析】由AD是ABC的角平分线,DEAB,DFAC,根据角平分线的性质,可得DE=DF,BED=CFD=90,继而证得RtBEDRtCFD,则可得B=C,证得AB=AC,然后由三线合一,证得AD是BC的中垂
17、线.【详解】解:是的角平分线,在和中,是的角平分线,是的中垂线.【考点】此题考查了等腰三角形的性质与判定以及全等三角形的判定与性质注意掌握三线合一性质的应用.2、证明见解析【解析】【分析】根据线段垂直平分线的性质得到BE=DE,根据等腰三角形的性质得到BEG=DEG,根据平行线的性质得到BEG=BAC,DEG=AFE,等量代换得到EAF=AFE,根据得到结论【详解】EG垂直平分BC,BE=DE,BEG=DEG,ACB=90,EGAC,BEG=BAC,DEG=AFE,EAF=AFE,AE=EF,点E在AF的垂直平分线上【考点】此题考查线段的垂直平分线的性质,平行线的性质,熟练掌握线段垂直平分线的
18、性质是解题的关键3、(1)见解析;(2);(3)【解析】【分析】(1)延长到点G,使,连接,首先证明,则有,然后利用角度之间的关系得出,进而可证明,则,则结论可证;(2)分别作点A关于和的对称点,连接,交于点,交于点,根据轴对称的性质有,当点、在同一条直线上时,即为周长的最小值,然后利用求解即可;(3)旋转至的位置,首先证明,则有,最后利用求解即可【详解】(1)证明:如解图,延长到点,使,连接,在和中,在和中,;(2)解:如解图,分别作点A关于和的对称点,连接,交于点,交于点由对称的性质可得,此时的周长为当点、在同一条直线上时,即为周长的最小值,;(3)解:如解图,旋转至的位置,在和中,【考点
19、】本题主要考查全等三角形的判定及性质,轴对称的性质,掌握全等三角形的判定及性质是解题的关键4、证明见解析【解析】【分析】先根据等腰三角形的性质可得,再根据线段的和差可得,然后根据三角形的判定与性质即可得证【详解】,即,在和中,即【考点】本题考查了等腰三角形的性质、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键5、(1)ABC的周长为10;(2)【解析】【分析】(1)利用非负数的性质求出a与b的值,即可确定出三角形周长;(2)根据三角形三边满足的条件是,两边和大于第三边,两边的差小于第三边,根据此来确定绝对值内的式子的正负,从而化简计算即可【详解】解:(1),a-2=0,b-4=0,a=2,b=4,ABC为等腰三角形,当2为腰时,则三边为2,2,4,而2+24,能组成三角形,ABC的周长为2+4+4=10;(2)ABC三条边的长分别为a、b、c,即,【考点】本题主要考查了等腰三角形的性质,三角形的三边关系,以及绝对值的计算,第(2)问的关键是先根据三角形三边的关系来判定绝对值内式子的正负