收藏 分享(赏)

基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx

上传人:高**** 文档编号:2001789 上传时间:2024-06-13 格式:DOCX 页数:28 大小:628.72KB
下载 相关 举报
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第1页
第1页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第2页
第2页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第3页
第3页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第4页
第4页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第5页
第5页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第6页
第6页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第7页
第7页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第8页
第8页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第9页
第9页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第10页
第10页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第11页
第11页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第12页
第12页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第13页
第13页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第14页
第14页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第15页
第15页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第16页
第16页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第17页
第17页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第18页
第18页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第19页
第19页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第20页
第20页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第21页
第21页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第22页
第22页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第23页
第23页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第24页
第24页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第25页
第25页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第26页
第26页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第27页
第27页 / 共28页
基础强化人教版九年级数学上册第二十三章旋转专项测评练习题(含答案解析).docx_第28页
第28页 / 共28页
亲,该文档总共28页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十三章旋转专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,ACB90,A30,BC2将ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到EDC,

2、斜边DE交AC边于点F,则图中阴影部分的面积为()A3B1CD2、图,在中,将绕顶点顺时针旋转到,当首次经过顶点时,旋转角()A30B40C45D603、在方格纸中,选择标有序号中的一个小正方形涂黑,与图中阴影部分构成中心对称图形该小正方形的序号是()ABCD4、如图下面图形既是轴对称图形,又是中心对称图形的是()ABCD5、在平面直角坐标系中,点关于原点对称的点的坐标是()ABCD6、如图,在钝角中,将绕点顺时针旋转得到,点,的对应点分别为,连接则下列结论一定正确的是()ABCD平分7、下列图形中既是轴对称图形,也是中心对称图形的是()ABCD8、下列图形中,是中心对称图形的是()ABCD9

3、、如图,在中,将绕点顺时针旋转度得到,当点的对应点恰好落在边上时,则的长为()A1.6B1.8C2D2.610、如图,在中,将绕点顺时针旋转得到,点A、B的对应点分别是,点是边的中点,连接,则下列结论错误的是()AB,CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,两块完全一样的含30角的三角板完全重叠在一起,若绕长直角边中点M转动,使上面一块三角板的斜边刚好经过下面一块三角板的直角顶点,已知A30,BC2,则此时两直角顶点C,C间的距离是 _2、镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示A灯发出的光

4、束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动12,B灯每秒转动4B灯先转动12秒,A灯才开始转动当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是 3、下列4种图案中,是中心对称图形的有_个4、已知点与点关于原点对称,则的值为_5、如图,已知:,以AB为边作正方形ABCD,使P、D两点落在直线AB的两侧当时,则PD的长为_三、解答题(5小题,每小题10分,共计50分)1、问题情境:数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,ABC和DEC是两个全等的直角三角形纸片,其中ACBDCE90,BE

5、30,ABDE4解决问题:(1)如图1,智慧小组将DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DEAC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,当DEC绕点C继续旋转到如图2所示的位置时,连接AE、AD、BD,他们提出SBDCSAEC,请你帮他们验证这一结论是否正确,并说明理由2、图,在每个小正方形的边长为1个单位的网格中,的顶点均在格点(网格线的交点)上(1)将向右平移5个单位得到,画出;(2)将(1)中的绕点C1逆时针旋转得到,画出3、如图,在等腰ABC中,点D为直线BC上一动点(点D不B、C重合),以AD为边向右侧作正方形ADEF,连接CF【猜想】如图

6、,当点D在线段BC上时,直接写出CF、BC、CD三条线段的数量关系【探究】如图,当点D在线段BC的延长线上时,判断CF、BC,CD三条线段的数量关系,并说明理由【应用】如图,当点D在线段BC的反向延长线上时,点A、F分别在直线BC两侧,AEDF交点为点O连接CO,若,则 4、如图,直线与x轴、y轴分别交于A、B两点,把ABC绕点A顺时针旋转90后得到,求点的坐标?5、在RtABC中,ABC90,ACB30,将ABC绕点C顺时针旋转一定的角度得到DEC,点A、B的对应点分别是D、E(1)当点E恰好在AC上时,如图1,求ADE的大小;(2)若60时,点F是边AC中点,如图2,求证:四边形BEDF是

7、平行四边形-参考答案-一、单选题1、D【解析】【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积【详解】解:如图,设与相交于点,旋转,是等边三角形,阴影部分的面积为故选D【考点】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键2、B【解析】【分析】根据平行四边形的性质及旋转的性质可知,然后可得,则有,进而问题可求解【详解】解:四边形是平行四边形,由旋转的性质可得,;故选B【考点】本题主要考查平行四边形的性质与旋转的性质,熟练掌握平行四

8、边形的性质与旋转的性质是解题的关键3、B【解析】【分析】直接利用中心对称图形的性质得出答案即可【详解】解:如图,把标有序号的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,故选B【考点】本题考查了利用旋转设计图案和中心对称图形的定义,要知道,一个图形绕端点旋转180所形成的图形叫中心对称图形4、B【解析】【详解】解:A、是轴对称图形,但不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是中心对称图形,但不是轴对称图形,故本选项不符合题意;D、是轴对称图形,但不是中心对称图形,故本选项不符合题意;故选:B【考点】本题主要考查了轴对称图

9、形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键5、C【解析】【分析】根据坐标系中对称点与原点的关系判断即可【详解】关于原点对称的一组坐标横纵坐标互为相反数,所以(3,2)关于原点对称的点是(-3,-2),故选C【考点】本题考查原点对称的性质,关键在于牢记基础知识6、D【解析】【分析】根据旋转可知CABEAD,CAE=70,结合BAC=35,可知BAE=35,则可证得CABEAB,即可作答【详解】根据旋转的性质可知CABE

10、AD,CAE=70,BAE=CAE-CAB=70-35=35,AC=AE,AB=AD,BC=DE,ABC=ADE,故A、B错误,CAB=EAB,AC=AE,AB=AB,CABEAB,EABEADBEA=DEA,AE平分BED,故D正确,AD+BE=AB+BEAE=AC,故C错误,故选:D【考点】本题考查了旋转的性质和全等三角形的判定与性质,求出BAE=35是解答本题的关键7、B【解析】【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,

11、故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意故选:B【考点】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合8、C【解析】【分析】中心对称图形是指把一个图形绕着某一点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,根据定义结合图形判断即可【详解】根据对中心对称图形的定义结合图像判断,A、B属于轴对称图形,C选项满足中心对称图形的定义,故选:C【考点】本题考查中心对称图形的定义,根据定义结合图形分析并选出适合的选项是解

12、决本题的关键9、A【解析】【分析】由将ABC绕点A按顺时针旋转一定角度得到ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由B=60,可证得ABD是等边三角形,继而可得BD=AB=2,则可求得答案【详解】由旋转的性质可知,为等边三角形,故选A【考点】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB10、D【解析】【分析】根据旋转的性质可判断A;根据直角三角形的性质、三角形外角的性质、平行线的判定方法可判断B;根据平行四边形的判定与性质以及全等三角形的判定与性质可判断C;利用等腰三角形的性质和含30角的直角三角形的性质可判断D【详解】A将ABC绕点C顺时针旋转60得到DE

13、C,BCE=ACD=60,CB=CE,BCE是等边三角形,BE=BC,故A正确; B点F是边AC中点,CF=BF=AF=AC,BCA=30,BA=AC,BF=AB=AF=CF,FCB=FBC=30,延长BF交CE于点H,则BHE=HBC+BCH=90,BHE=DEC=90,BF/ED,AB=DE,BF=DE,故B正确CBFED,BF=DE,四边形BEDF是平行四边形,BC=BE=DF, AB=CF, BC=DF,AC=CD,ABCCFD,故C正确;DACB=30, BCE=60,FCG=30,FG=CG,CG=2FGDCE=CDG=30,DG=CG,DG=2FG故D错误故选D【考点】本题考查了

14、旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,含30角的直角边等于斜边的一半,以及平行四边形的判定与性质等知识,综合性较强,正确理解旋转性质是解题的关键二、填空题1、【解析】【分析】先求解,由旋转的性质可得可证是等边三角形,即可求的长【详解】解:如图,连接, 点M是AC中点, AM=CM=, 旋转, , ,是等边三角形 故答案为:【考点】本题考查了等边三角形的判定,勾股定理的应用,旋转的性质,熟练运用旋转的性质是解本题的关键2、6秒或19.5秒【解析】【分析】设A灯旋转t秒,两灯光束平行,B灯光束第一次到达BQ需要180445(秒),推出t4512,即t33利用平行线的性质,结合

15、角度间关系,构建方程即可解答【详解】解:设A灯旋转t秒,两灯的光束平行,B灯光束第一次到达BQ需要180445(秒),t4512,即t33由题意,满足以下条件时,两灯的光束能互相平行:如图,MAMPBP,12t4(12+t),解得t6;如图,NAM+PBP180,12t180+4(12+t)180,解得t19.5;综上所述,满足条件的t的值为6秒或19.5秒故答案为:6秒或19.5秒【考点】本题主要考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型3、2【解析】【分析】根据中心对称图形的概念即可求解.【详解】第1个图形,是中心对称图形,符合题意;第2个图形,不是中心对称图形,不符

16、合题意;第3个图形,是中心对称图形,符合题意;第4个图形,不是中心对称图形,不符合题意.故答案为:2.【考点】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、【解析】【分析】根据已知条件求出a,b,代入求值即可;【详解】点与点关于原点对称,;故答案是【考点】本题主要考查了平面直角坐标系点的对称,准确计算是解题的关键5、【解析】【分析】由于ADAB,DAB90,则把APD绕点A顺时针旋转90得到AFB,AD与AB重合,PA旋转到AF的位置,根据旋转的性质得到APAF,PAF90,PDFB,则APF为等腰直角三角形,得到APF45,即有BPF

17、APB+APF45+4590,然后在RtFBP中,根据勾股定理可计算出FB的长,即可得到PD的长【详解】解:ADAB,DAB90,把APD绕点A顺时针旋转90得到AFB,AD与AB重合,PA旋转到FA的位置,如图,APAF,PAF90,PDFB,APF为等腰直角三角形,APF45, ,BPFAPB+APF45+4590,在RtFBP中,PB4,由勾股定理得,故答案为:【考点】本题考查了正方形的性质,旋转的性质,等腰直角三角形的判定和性质以及勾股定理正确的作出辅助线是解题关键三、解答题1、(1)证明见解析;(2)正确,理由见解析【解析】【分析】(1)如图1中,根据旋转的性质可得ACCD,然后求出

18、ACD是等边三角形,根据等边三角形的性质可得ACD60,然后根据内错角相等,两直线平行进行解答;(2)如图2中,作DMBC于M,ANEC交EC的延长线于N根据旋转的性质可得BCCE,ACCD,再求出ACNDCM,然后利用“角角边”证明ACN和DCM全等,根据全等三角形对应边相等可得ANDM,然后利用等底等高的三角形的面积相等证明【详解】解:(1)如图1中,DEC绕点C旋转点D恰好落在AB边上,ACCD,BAC90B903060,ACD是等边三角形,ACD60,又CDEBAC60,ACDCDE,DEAC;(2)结论正确,理由如下:如图2中,作DMBC于M,ANEC交EC的延长线于NDEC是由AB

19、C绕点C旋转得到,BCCE,ACCD,ACNBCN90,DCMBCN1809090,ACNDCM,在ACN和DCM中,ACNDCM(AAS),ANDM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即SBDCSAEC【考点】本题属于几何变换综合题,主要考查了全等三角形的判定与性质,等边三角形的判定与性质,旋转的性质的综合应用,添加恰当辅助线构造全等三角形是解题的关键2、(1)作图见解析;(2)作图见解析【解析】【分析】(1)利用点平移的规律找出、,然后描点即可;(2)利用网格特点和旋转的性质画出点,即可【详解】解:(1)如下图所示,为所求;(2)如下图所示,为所求;【考点】本题

20、考查了平移作图和旋转作图,熟悉相关性质是解题的关键3、【猜想】CD= BC- CF,理由见解析;【探究】CF= BC+ CD,理由见解析;【应用】【解析】【分析】【猜想】 利用SAS证明BADCAF,得出BD= CF,然后根据线段的和差关系可得结论;【探究】利用SAS证明BADCAF,得出BD= CF,然后根据线段的和差关系可得出结论;【应用】 利用SAS证明BADCAF,得出BD= CF,ACF=ABD = 135,求出DCF= 90,在RtDCF中利用勾股定理求出DF,利用直角三角形的斜边中线的性质可得结论【详解】解:【猜想】CD= BC- CF,理由如下:BAC=90,AB=AC,ABC

21、=ACB=45,四边形ADEF是正方形,AD= AF,DAF= 90=BAC,BAD=FAC,在BAD和CAF中, ,BADCAF (SAS),BD= CF,CD= BC- BD,CD= BC- CF:解:【探究】CF= BC+ CD,理由如下:BAC= 90,AB= AC,ABC=ACB=45,四边形 ADEF是正方形, AD= AF,DAF= 90,BAD=BAC +DAC,CAF=DAF+DAC,在BAD和CAF中, ,BADCAF (SAS),BD= CF,BD= BCCD,CF= BC+CD;解:【应用】BAC= 90,AB= AC,ABC=ACB=45,四边形ADEF是正方形,AD

22、= AF,DAF= 90,BAC=DAF,BAD=CAF,在BAD和CAF中,BADCAF (SAS),BD=CF,ACF=ABD= 180- 45= 135,,FCD=ACF-ACB = 90,FCD为直角三角形, ,CD= BC+ BD, CD = BC+CF= 2+1=3, ,正方形ADEF中,O为DF中点, ,故答案为: 【考点】本题是四边形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,正方形的性质,直角三角形斜边中线的性质等知识点,解题的关键是能够综合运用运用有关的知识解决问题4、【解析】【分析】根据坐标轴上点的坐标特征求出点和点坐标,得到,再利用旋转的性质得,则可

23、判断轴,然后根据点的坐标的表示方法写出点的坐标【详解】解:当时,解得,则,当时,则,所以,因为把绕点顺时针旋转后得到,所以,则轴,所以点的横坐标为,纵坐标为 所以点的坐标为【考点】本题考查了坐标与图形变化旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:,也考查了一次函数图象上点的坐标特征5、(1)ADE15;(2)见解析【解析】【分析】(1)根据旋转的性质可得CACD,ECDBCA30,DECABC90,根据等边对等角即可求出CADCDA75,再根据直角三角形的两个锐角互余即可得出结论;(2)根据直角三角形斜边上的中线等于斜边的一半可得BFA

24、C,然后根据30所对的直角边是斜边的一半即可求出ABAC,从而得出 BFAB,然后证出ACD和BCE为等边三角形,再利用HL证出CFDABC,证出DFBE,即可证出结论【详解】(1)解:ABC绕点C顺时针旋转得到DEC,点E恰好在AC上,CACD,ECDBCA30,DECABC90,CADCDA(18030)75,ADE90CAD15;(2)证明:如图2,连接AD点F是边AC中点,BFAF=CFAC,ACB30,ABAC,BF=CFAB,ABC绕点C顺时针旋转60得到DEC,BCEACD60,CBCE,DEAB,DC=ACDEBF,ACD和BCE为等边三角形,BECB,点F为ACD的边AC的中点,DFAC,在RtCFD和RtABC中RtCFDRtABC,DFBC,DFBE,而BFDE,四边形BEDF是平行四边形【考点】此题考查的是旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定,掌握旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定是解决此题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3