ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:524KB ,
资源ID:19947      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-19947-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(上海市南洋模范中学2020-2021学年高二上学期9月月考数学试卷 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

上海市南洋模范中学2020-2021学年高二上学期9月月考数学试卷 WORD版含答案.doc

1、 南洋模范中学高二月考数学试卷2020.09一. 填空题1. 函数在处取得最大值,则 2. 已知等差数列满足,那么数列的前8项和 3. 已知向量、为单位向量,且夹角为60,则 4. 若增广矩阵的线性方程组的解为,则实数 5. 的内角、的对边分别为、,若,则的面积为 6. 在Rt中,为斜边上靠近点的三等分点,为边的中点,则的值为 7. 已知,、均为锐角,则 8. 圆为的外接圆,半径为2,若,且,则向量在向量方向的投影为 9. 方程所有解的和为 10. 设函数(,)的图像关于直线对称,它的周期为,则下列说法正确是 (填写序号)的图像过点; 在上单调递减;的一个对称中心是;将的图像向右平移个单位长度

2、得到函数的图像;11. 如图所示,正方形上连接等腰直角三角形,直角三角形上再连接正方形,如此无限重复下去,设正方形面积为、,三角形面积为、,当第一个正方形的边长为2时,则这些正方形和三角形的面积的总和为 12. 在平面凸四边形中,点、分别是边、的中点,且,若,则的值为 二. 选择题13. 已知,且,那么( )A. 10 B. 5 C. D. 14. 已知,则的值为( )A. B. C. D. 15. 如图所示,在中,点是边上任意一点,是线段的中点,若存在实数和,使得,则( )A. B. C. D. 16. 在平面直角坐标系中,定义为点到点的变换,我们把它称为点变换,已知,是经过点变换得到一组无

3、穷点列,设,则满足不等式最小正整数的值为( )A. 9 B. 10 C. 11 D. 12三. 解答题17. 解关于、的方程组,请对方程组解的情况进行讨论.18. 已知,且向量与不共线.(1)若与的夹角为45,求;(2)若向量与的夹角为钝角,求实数的取值范围.19. 数列满足,.(1)证明:数列是等差数列;(2)设,求数列的前项和.20. 已知,函数.(1)求的最小正周期;(2)求在内的零点的个数;(3)将的图像先向下平移个单位,再把横坐标变为原来的倍,纵坐标不变,其中,得到的图像,若在上恒满足,求所有可取的值.21. 对于数列,若存在,使得对任意都成立,则称数列为“折叠数列”.(1)若,判断

4、数列、是否是“折叠数列”,如果是,指出的值;如果不是,请说明理由;(2)若,求所有的实数,使得数列是折叠数列;(3)给定常数,是否存在数列,使得对所有,都是折叠数列,且的各项中恰有个不同的值,证明你的结论.参考答案一. 填空题1. 2. 64 3. 4. 5. 6. 6 7. 8. 39. 4 10. 11. 10 12. 二. 选择题13. D 14. B 15. B 16. C三. 解答题17. 当且时,方程组有唯一解;当时,方程组有无穷多解,即();当时,方程组无解.18.(1);(2).19.(1)证明略;(2).20.(1),;(2)13;(3),.21.(1)是“折叠数列”,;不是“折叠数列”;(2)或或;(3)存在,证明略.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3