1、第二十九讲等比数列班级_姓名_考号_日期_得分_一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内)1在等比数列an中,a7a116,a4a145,则()A.B.C.或 D或解析:在等比数列an中,a7a11a4a146又a4a145由、组成方程组解得或或.答案:C2在等比数列an中a12,前n项和为Sn,若数列an1也是等比数列,则Sn等于()A2n12 B3nC2n D3n1解析:要an是等比数列,an1也是等比数列,则只有an为常数列,故Snna12n.答案:C评析:本题考查了等比数列的性质及对性质的综合应用,抓住只有常数列有此性质是本题的关键,也是技巧
2、;否则逐一验证,问题运算量就较大3设等比数列an的前n项和为Sn,若S6S312,则S9S3等于()A12 B23C34 D13解析:解法一:S6S312,an的公比q1.由,得q3,.解法二:因为an是等比数列,所以S3,S6S3,S9S6也成等比数列,即(S6S3)2S3(S9S6),将S6S3代入得,故选C.答案:C4已知等比数列an中,an0,a10a11e,则lna1lna2lna20的值为()A12 B10C8 De解析:lna1lna2lna20ln(a1a20)(a2a19)(a10a11)lne1010,故选B.答案:B5若数列an满足a15,an1(nN*),则其前10项和
3、是()A200 B150C100 D50解析:由已知得(an1an)20,an1an5,S1050.故选D.答案:D6.在等比数列an中,a1a2an2n1(nN*),则aaa等于()A(2n1)2 B.(2n1)2C4n1 D.(4n1)解析:若a1a2an2n1,则an2n1,a11,q2,所以aaa(4n1),故选D.答案:D二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上)7数列an中,设数列an的前n项和为Sn,则S9_.解析:S9(122242628)(371115)377.答案:3778数列an的前n项之和为Sn,Sn1an,则an_.解析:n1时,
4、a1S11a1,得a1,n2时,Sn1an,Sn11an1.两式相减得anan1an,即anan1,所以an是等比数列,首项为a1,公比为,所以ann1.答案:n19an是等比数列,前n项和为Sn,S27,S691,则S4_.解析:设数列an的公比为q,S27,S691.q4q2120,q23.S4a1(1q)(1q2)(a1a1q)(1q2)28.答案:2810设数列an的前n项和为Sn(nN),关于数列an有下列四个命题:若an既是等差数列又是等比数列,则anan1(nN)若Snan2bn(a,bR),则an是等差数列若Sn1(1)n,则an是等比数列若an是等比数列,则Sm,S2mSm,
5、S3mS2m(mN)也成等比数列其中正确的命题是_(填上正确命题的序号)解析:若an既是等差数列又是等比数列,an为非零常数列,故anan1(nN);若an是等差数列,Snn2n为an2bn(a,bR)的形式;若Sn1(1)n,则n2时,anSnSn11(1)n1(1)n1(1)n1(1)n,而a12,适合上述通项公式,所以an(1)n1(1)n是等比数列;若an是等比数列,当公比q1且m为偶数时,Sm,S2mSm,S3mS2m不成等比数列答案:三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤)11已知数列an中,a11,前n项和为Sn,对任意的自然数n2
6、,an是3Sn4与2Sn1的等差中项(1)求an的通项公式;(2)求Sn.解:(1)由已知,当n2时,2an(3Sn4)(2Sn1),又anSnSn1,由得an3Sn4(n2)an13Sn14两式相减得an1an3an1.a2,a3,an,成等比数列,其中a23S243(1a2)4,即a2,q,当n2时,ana2qn2n2n1.即(2)解法一:当n2时Sna1a2ana1(a2an)11n1,当n1时S110也符合上述公式Snn1.解法二:由(1)知n2时,an3Sn4,即Sn(an4),n2时,Sn(an4)n1.又n1时,S1a11亦适合上式Snn1.12设数列an的前n项和为Sn,且(3
7、m)Sn2manm3(nN*),其中m为常数,且m3.(1)求证:an是等比数列;(2)若数列an的公比qf(m),数列bn满足b1a1,bnf(bn1)(nN*,n2),求证:为等差数列,并求bn.解:(1)证明:由(3m)Sn2manm3,得(3m)Sn12man1m3,两式相减,得(3m)an12man,m3,(n1)an是等比数列(2)由(3m)S12ma1m3,解出a11,b11.又an的公比为,qf(m),n2时,bnf(bn1),bnbn13bn3bn1,推出.是以1为首项,为公差的等差数列,1,又1符合上式,bn.13已知an是首项为a1,公比q(q1)为正数的等比数列,其前n
8、项和为Sn,且有5S24S4,设bnqSn.(1)求q的值;(2)数列bn能否是等比数列?若是,请求出a1的值;若不是,请说明理由解:(1)由题意知5S24S4,S2,S4,5(1q2)4(1q4),得q21.又q0,q.(2)解法一:Sn2a1a1n1,于是bnqSn2a1a1n1,若bn是等比数列,则2a10,即a1,此时,bnn1,数列bn是等比数列,所以存在实数a1,使数列bn为等比数列解法二:由于bn2a1a1n1,所以b1a1,b2a1,b3a1,若数列bn为等比数列,则bb1b3,即2,整理得4aa10,解得a1或a10(舍去),此时bnn1.故存在实数a1,使数列bn为等比数列