1、19.3.2 正方形的判定一、教学目的1掌握正方形判定,并会用它们进行有关的论证和计算2理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力 二、重点、难点1教学重点:正方形的判定 2教学难点:正方形性质与判定的灵活运用 三、例题的意图分析例题是正方形判定的应用,它是先判定一个四边形是矩形,再证明一组邻边,从而可以判定这个四边形是正方形随后可以再做一组判断题,进行练习巩固(参看随堂练习1),为了活跃学生的思维,也可以将判断题改为下列问题让学生思考:对角线相等的菱形是正方形吗?为什么?对角线互相垂直的矩形
2、是正方形吗?为什么?对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?能说“四条边都相等的四边形是正方形”吗?为什么?说“四个角相等的四边形是正方形”对吗?四、例习题分析例 (补充)已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1l2,作BMl1于M,DNl1于N,直线MB、DN分别交l2于Q、P点求证:四边形PQMN是正方形分析:由已知可以证出四边形PQMN是矩形,再证ABMDAN,证出AM=DN,用同样的方法证AN=DP即可证出MN=NP从而得出结论证明: PNl1,QMl1, PNQM,PNM=90 PQNM, 四边形PQMN是矩形 四边形ABCD是正方形 BAD=ADC=90,AB=AD=DC(正方形的四条边都相等,四个角都是直角) 1+2=90又 3+2=90, 1=3 ABMDAN AM=DN 同理 AN=DP AM+AN=DN+DP即 MN=PN 四边形PQMN是正方形(有一组邻边相等的矩形是正方形)五、随堂练习1下列说法是否正确,并说明理由对角线相等的菱形是正方形;( )对角线互相垂直的矩形是正方形;( )对角线垂直且相等的四边形是正方形;( )四条边都相等的四边形是正方形;( )四个角相等的四边形是正方形( )六、课后练习1 已知:如图,ABC中,C=90,CD平分ACB,DEBC于E,DFAC于F求证:四边形CFDE是正方形2