ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:52KB ,
资源ID:197904      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-197904-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018版数学新导学同步选修2-2人教A版课时作业17数学归纳法 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018版数学新导学同步选修2-2人教A版课时作业17数学归纳法 WORD版含解析.doc

1、课时作业17数学归纳法|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1用数学归纳法证明“凸n边形的内角和等于(n2)”时,归纳奠基中n0的取值应为()A1B2C3 D4解析:边数最少的凸n边形为三角形,故n03.答案:C2用数学归纳法证明123n2,则当nk1时左端应在nk的基础上加上()Ak21B(k1)2C.D(k21)(k22)(k1)2解析:当nk时,左端123k2,当nk1时,左端123k2(k21)(k22)(k1)2,故当nk1时,左端应在nk的基础上加上(k21)(k22)(k1)2,故选D.答案:D3用数学归纳法证明“当n为正奇数时,xnyn能被xy整除”

2、的第二步是()A假设n2k1时正确,再推n2k3时正确(kN*)B假设n2k1时正确,再推n2k1时正确(kN*)C假设nk时正确,再推nk1时正确(kN*)D假设nk(k1)时正确,再推nk2时正确(kN*)解析:nN*且为奇数,由假设n2k1(nN*)时成立推证出n2k1(kN*)时成立,就完成了归纳递推答案:B4若命题A(n)(nN*)nk(kN*)时命题成立,则有nk1时命题成立现知命题对nn0(n0N*)时命题成立则有()A命题对所有正整数都成立B命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立C命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立D以上

3、说法都不正确解析:由题意知nn0时命题成立能推出nn01时命题成立,由nn01时命题成立,又推出nn02时命题也成立,所以对大于或等于n0的正整数命题都成立,而对小于n0的正整数命题是否成立不确定答案:C5k棱柱有f(k)个对角面,则(k1)棱柱的对角面个数f(k1)为(k3,kN*)()Af(k)k1 Bf(k)k1Cf(k)k Df(k)k2解析:三棱柱有0个对角面,四棱柱有2个对角面(020(31);五棱柱有5个对角面(232(41);六棱柱有9个对角面(545(51)猜想:若k棱柱有f(k)个对角面,则(k1)棱柱有f(k)k1个对角面答案:A二、填空题(每小题5分,共15分)6用数学

4、归纳法证明.假设nk时,不等式成立,则当nk1时,应推证的目标不等式是_解析:观察不等式左边的分母可知,由nk到nk1左边多出了这一项答案:7对任意nN*,34n2a2n1都能被14整除,则最小的自然数a_.解析:当n1时,36a3能被14整除的数为a3或5;当a3且n2时,31035不能被14整除,故a5.答案:58用数学归纳法证明12222n12n1(nN)的过程如下:当n1时,左边1,右边2111,等式成立假设当nk时,等式成立,即12222k12k1,则当nk1时,12222k12k2k11,所以,当nk1时等式成立由此可知,对任何nN,等式都成立上述证明错误的是_解析:用数学归纳法证

5、明问题一定要注意,在证明nk1时要用到假设nk的结论,所以错误答案:三、解答题(每小题10分,共20分)9用数学归纳法证明:159(4n3)(2n1)n.证明:当n1时,左边1,右边1,命题成立假设nk(k1,kN*)时,命题成立,即159(4k3)k(2k1)则当nk1时,左边159(4k3)(4k1)k(2k1)(4k1)2k23k1(2k1)(k1)2(k1)1(k1)右边,当nk1时,命题成立由知,对一切nN*,命题成立10求证:1(nN*)证明:当n1时,左边1,右边,所以不等式成立假设当nk(k1,kN*)时不等式成立,即1.则当nk1时,12k1.当nk1时,不等式成立由可知1(

6、nN*)成立|能力提升|(20分钟,40分)11已知123332433n3n13n(nab)对一切nN*都成立,那么a,b的值为()Aa,bBabCa0,bDa,b解析:法一:特值验证法,将各选项中a,b的值代入原式,令n1,2验证,易知选A.法二:因为123332433n3n13n(nab)对一切nN*都成立,所以当n1,2时有即解得答案:A12用数学归纳法证明“当nN*时,求证:12222325n1是31的倍数”时,当n1时,原式为_,从nk到nk1时需增添的项是_解析:当n1时,原式应加到251124,所以原式为12222324,从nk到nk1时需添25k25k125(k1)1.答案:1

7、222232425k25k125k225k325k413平面内有n(n2,nN*)条直线,其中任何两条均不平行,任何三条均不共点,证明:交点的个数f(n).证明:(1)当n2时,两条直线有一个交点,f(2)1,命题成立(2)假设当nk(k2,kN*)时,命题成立,即f(k).那么当nk1时,第k1条直线与前k条直线均有一个交点,即新增k个交点,所以f(k1)f(k)kk,即当nk1时命题也成立根据(1)和(2),可知命题对任何n2,nN*都成立14已知数列an中,a15,Sn1an(n2且nN*)(1)求a2,a3,a4并由此猜想an的表达式(2)用数学归纳法证明an的通项公式解析:(1)a2S1a15,a3S2a1a210,a4S3a1a2a320.猜想:an52n2(n2,nN*)(2)当n2时,a252225成立假设当nk时猜想成立,即ak52k2(k2且kN*)则nk1时,ak1Ska1a2ak551052k2552k1.故当nk1时,猜想也成立由可知,对n2且nN*.都有an52n2.于是数列an的通项公式为an

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3