ImageVerifierCode 换一换
格式:PPT , 页数:36 ,大小:850.50KB ,
资源ID:197157      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-197157-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2013届新课标高中数学(理)第一轮总复习第10章 第61讲 柱、锥、台、球的表面积与体积.ppt)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2013届新课标高中数学(理)第一轮总复习第10章 第61讲 柱、锥、台、球的表面积与体积.ppt

1、1.圆锥的全面积是侧面积的倍,侧面展开图的圆心角等于 23222.rlrlrlrlrlr 设底面半径为,母线长为,侧面展开图的圆心角为,则由题可知,得,又,所以解析:.324若圆锥的底面半径是,高是,则它的侧面积是 15 34515.rhlSrl侧依题意,底面半径,高,则母线长为,所以解析:222436或643.圆柱的侧面展开图是边长为和的矩形,则圆柱的体积是 222224264 62426349 4362436.rlrrlVrrlV 设底面半径为,母线长为,由题可知有两种情形:,得,此时,;,得,此时,;综上可知,圆柱的体积是或解析:44.2.棱长为 的正方体的内切球的表面积为 24:14.

2、rSr依题意,正方体的内切球的半径为,所以表面积为解析835.2若等腰直角三角形的直角边长为,则以一直角边所在的直线为轴旋转一周所成的几何体体积是2211331822.33VS hRh解析:如图为等腰直角三角形旋转而成的旋转体几何体的表面积【例1】斜三棱柱ABCA1B1C1的底面是边长等于a的正三角形,侧棱长等于b.一条侧棱AA1和底面相邻的两条边AB,AC都成45角,求这个斜三棱柱的侧面积【解析】如图,由于侧棱AA1和底面相邻的两条边AB,AC都成45角,所以点A1在底面ABC内的射影 O 在 BAC 的 平 分 线 AD上由于底面ABC是正三角形,所以BCAD,即BCAO.1111111.

3、45sin452222 2(2+1).BB C CabAAABACSAA B BSAAC CababSababab故侧面是矩形,其面积等于又因为侧棱和底面相邻的两条边,都成角,所以 四边形 四边形,故这个斜三棱柱的侧面积 由于给出的棱柱不是正棱柱,所以在求侧面积时,应对每一个侧面的面积分别进 行 计 算 本 题 的 关 键 是 判 断 侧 面BB1C1C的形状,其中应用了非常重要的结论:从角的顶点出发的一条射线,如果它和角的两边所成的角相等,那么这条射线在角所在平面内的射影在角的平分线上(自己证明)【变式练习1】在三棱柱ABCA1B1C1中,底面是边长为a的正三角形,且AA1与AC,AB所成的

4、角均为60,且A1AAB,求该三棱柱的侧面积111111111111111111222.60./.22sin60(13).AOABCOAAACABA AABOABCAOBCAOBCAOAOOBCA AOA AA AOBCA AA AB BBCB BBCC BSSA ABBSBCC Baaa侧作底面于因为与,所成的角均为,且,所以 是的中心,所以又,且,从而平面又平面,所以而,故所以侧面是矩形,所以四边形 矩形 【解析】几何体的体积【例2】如图,边长为4的正方形ABCD所在平面与正PAD所在平面互相垂直,Q是AD的中点求三棱锥CPBD的体积2.42 3111642 33.323CPBDPBCDQ

5、ADPADPQADPADABCDPQABCDADPQCPBDVV因为 为的中点,为正三角形,所以,因为平面平面,所以平面因为,所以;所以三棱锥 的体积为【解析】若用直接法求三棱锥CPBD的体积,就必须求C到平面PBD的距离,显然这是比较困难的一般来讲,当直接法求距离(高)遇到较大阻力时,往往可以轮换三棱锥中的顶点,将底面和高转化为题目已知或容易求解的问题,这是解决求高或体积问题时常用的思路【变式练习2】将棱长为1的正方体ABCDA1B1C1D1中 截 去 一 角 B1A1BC1,求 三 棱 锥B1A1BC1的体积,并求三棱锥B1A1BC1的高111111112111111111111 1 1=

6、.326233(2).4211361313h=.3263VBA BCVBA B CA BCBA BChVBA BCS A BC hh 如图,因为正三角形的边长为,所以其面积为设三棱锥的高为,则,所以,解得】【解析空间几何体的内接、内切、外接问题【例3】如图,已知一个圆锥的底面半径为R,高为H,在其中有一个高为x的内接圆柱(1)求圆柱的侧面积;(2)当x为何值时,圆柱的侧面积最大?2222max1.2.().2()2()0222()()24().22rSr xrHxRrHxRHHRSxHxHRxHxxHHRRHHSxHxxHHHRHxS圆柱侧圆柱侧圆柱侧圆柱侧设内接圆柱的底面半径为因为,所以 将

7、代入得 因为 ,所以,当 时,【解析】gg圆锥的内接问题,一般都要借助于三角形的相似找到变量之间的比例关系,将未知的变量转化为已知变量来解决圆柱、圆锥的表面积和体积求解的关键是求出底面半径、母线长和高,再准确运用公式进行计算而求最大、最小值的问题,往往都是转化为某个变量的函数,再运用相关函数的图象和性质求解即可【变式练习3】求棱长为1的正四面体的外接球的半径R.2222331=.332366Rt.33ABCDAAHHHOOBHCDEBOBOAORBHBEABHAHABBHOHR如图,在正四面体中,过 作垂直于底面,垂足是,则 为底面正三角形的中心设其外接球的球心为,则 必为正四面体的中心连结,

8、并延长交于,连结,则,在中,【,】解析222221Rt632 61,3332 6610.342443366.4434ABCDOBCDBOHRBOOHBHRRRRRVVAHOHRAOAH 方法:在中,两边平方得 ,解得 方法:由,得,即 V322326.224R方法:将正四面体放到正方体中,得正方体的棱长为,且正四面体的外接球即正方体的外接球,所以 1.4 3若一个球的体积为,则它的表面积为_.123244 333412.VRRSR球表因为,所以,则【解析】2.将边长为a的正方形ABCD沿着对角线AC折起,使BDa,则VDABC_3212 a23221122()2.32212DABCABODCB

9、ODACODOBODOACBOACDOBOOACBDOAOOCODOBaBDaDOOBVVVaaaI如图,取的中点,连结、,由题意知,又,所以平面,又因为,所以,所以【解析】30 324 cm4?cmc3.m.正六棱锥的高为,最长的对角线 为,则它的侧面积为2 316122 72835162 3 530 3.2lhS 侧由题意知,底面边长为,侧棱长为,斜高,所以解析:111111114.aABCDA B C DEFAACCAEBFD已知棱长为 的正方体中,、分别为棱、的中点求四棱锥的体积1111111111111111223“”.11331()31 111().3 446AEBFDEFVAEB

10、FDVAEFDVAEFBVFEBAVFA D ES A EB BCS A D E DCS A EBS A D E aaaaa如图所示,要直接求四棱锥的高非常困难,因此设法用 割补法 连结则【解析】5.设圆锥底面圆周上两点A、B间的距离为2,圆锥顶点到直线AB的距离为,AB和圆锥的轴之间的距离为1,求该圆锥的体积222.3.1.22.Rt2,12 2.332 2.3OPPOOAOBPABCOCPCPOOPCABOCABOCABOBPOCPOPCOCVOBPO如图,设圆锥的底面中心为,顶点为,连结、过点 作的垂线,垂足为,连结,则由于底面圆,且,所以,即又,所以在中,所以 故所求圆锥的体积为【解析

11、】1熟练掌握各种几何体的结构特征是求几何体的侧面积和体积的前提条件,特别是正棱柱和正棱锥的结构特征求多面体的侧面积的关键是将侧面沿着一条棱剪开,展成一个平面图形,弄清楚各个侧面的形状,然后 将 各 个 侧 面 的 面 积 相 加 即 得 所 求 侧 面积注意侧面积与表面积的区别,表面积是在侧面积的基础上加上底面面积2了解柱、锥、台、球的表面积和体积的计算公式(不要求记忆公式),注意公式间的联系与区别与圆柱、圆锥、球有关的组合体问题,主要是指内接和外切,解题时要认真研究轴截面、分析平面图,借助相似成比例或直角三角形中的勾股定理找到变量之间的联系3计算底面积和高都不易求的不规则几何体的体积时应尽量避免直接求解,要养成用“等积法”和“割补法”转化成规则几何体的习惯

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3