1、各地中考数学模拟:函数练习学习紧跟着人类进步的步伐,各地中考数学模拟专项练习函数。一、选择题1、(2019?济宁第8题)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(mA. m【考点】: 抛物线与x轴的交点.【分析】: 依题意画出函数y=(xa)(xb)图象草图,根据二次函数的增减性求解.【解答】: 解:依题意,画出函数y=(xa)(xb)的图象,如图所示.函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为a,b(a方程1(xa)(xb)=0转化为(xa)(xb)=1
2、,方程的两根是抛物线y=(xa)(xb)与直线y=1的两个交点.由抛物线开口向上,则在对称轴左侧,y随x增大而减少故选A.【点评】: 本题考查了二次函数与一元二次方程的关系,考查了数形结合的数学思想.解题时,画出函数草图,由函数图象直观形象地得出结论,避免了繁琐复杂的计算.2、(2019年山东泰安第20题)二次函数y=ax2+bx+c(a,b,c为常数,且a0)中的x与y的部分对应值如下表:X 1 0 1 3y 1 3 5 3下列结论:(1)ac1时,y的值随x值的增大而减小.(3)3是方程ax2+(b1)x+c=0的一个根;(4)当10.其中正确的个数为( )A.4个 B. 3个 C. 2个
3、 D. 1个【分析】:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.【解答】:由图表中数据可得出:x=1时,y=5值最大,所以二次函数y=ax2+bx+c开口向下,a0,所以ac二次函数y=ax2+bx+c开口向下,且对称轴为x= =1.5,当x1.5时,y的值随x值的增大而减小,故(2)错误;x=3时,y=3,9a+3b+c=3,c=3,9a+3b+3=3,9a+3b=0,3是方程ax2+(b1)x+c=0的一个根,故(3)正确;x=1时,ax2+bx+c=1,x=1时,ax2+(b1)x+c=0,x=3时,ax2+(b1)x+c=0,且函
4、数有最大值,当10,故(4)正确.故选B.【点评】:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.3、(2019年山东烟台第11题)二次函数y=ax2+bx+c(a0)的部分图象如图,图象过点(1,0),对称轴为直线x=2,下列结论:4a+b=0;9a+c3b;8a+7b+2c0;当x1时,y的值随x值的增大而增大.其中正确的结论有( )A.1个 B. 2个 C. 3个 D. 4个【分析】:根据抛物线的对称轴为直线x= =2,则有4a+b=0;观察函数图象得到当x=3时,函数值小于0,则9a3b+c
5、0;由于对称轴为直线x=2,根据二次函数的性质得到当x2时,y随x的增大而减小.【解答】:抛物线的对称轴为直线x= =2,b=4a,即4a+b=0,所以正确;当x=3时,y0,所以正确;对称轴为直线x=2,当12时,y随x的增大而减小,所以错误.故选B.【点评】:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0),对称轴在y轴左; 当a与b异号时(即ab0时,抛物线与x轴有2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac4、(2019?威海第11题)已知二次函数y=ax2+bx+
6、c(a0)的图象如图,则下列说法:c=0;该抛物线的对称轴是直线x=1;当x=1时,y=2a;am2+bm+a0(m1).其中正确的个数是( )A. 1 B. 2 C. 3 D. 4【考点】: 二次函数图象与系数的关系.【分析】: 由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】: 解:抛物线与y轴交于原点,c=0,故正确;该抛物线的对称轴是: ,直线x=1,故正确;当x=1时,y=2a+b+c,对称轴是直线x=1, ,b=2a,又c=0,y=4a,故错误;x=m对应的函数值为y=am2+bm+c,x=1对应的函数值为y=ab
7、+c,又x=1时函数取得最小值,ab+cb=2a,am2+bm+a0(m1).故正确.故选:C.【点评】: 本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.5、(2019?宁波第12题)已知点A(a2b,24ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为( )A. (3,7) B. (1,7) C. (4,10) D. (0,10)【考点】: 二次函数图象上点的坐标特征;坐标与图形变化-对称.【分析】: 把点A坐标代入二次函数解析式并利用完全平方公式整理,然后根据
8、非负数的性质列式求出a、b,再求出点A的坐标,然后求出抛物线的对称轴,再根据对称性求解即可.【解答】: 解:点A(a2b,24ab)在抛物线y=x2+4x+10上,(a2b)2+4(a2b)+10=24ab,a24ab+4b2+4a8ab+10=24ab,(a+2)2+4(b1)2=0,a+2=0,b1=0,解得a=2,b=1,a2b=221=4,24ab=24(2)1=10,点A的坐标为(4,10),对称轴为直线x= =2,点A关于对称轴的对称点的坐标为(0,10).故选D.【点评】: 本题考查了二次函数图象上点的坐标特征,二次函数的对称性,坐标与图形的变化对称,把点的坐标代入抛物线解析式并
9、整理成非负数的形式是解题的关键.6、(2019?温州第10题)如图,矩形ABCD的顶点A在第一象限,ABx轴,ADy轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y= (k0)中k的值的变化情况是( )A. 一直增大 B. 一直减小 C. 先增大后减小 D. 先减小后增大【考点】: 反比例函数图象上点的坐标特征;矩形的性质.【分析】: 设矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周长始终保持不变,则a+b为定值.根据矩形对角线的交点与原点O重合及反比例函数比例系数k的几何意义可知k= AB?
10、AD=ab,再根据a+b一定时,当a=b时,ab最大可知在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.【解答】: 解:设矩形ABCD中,AB=2a,AD=2B.矩形ABCD的周长始终保持不变,2(2a+2b)=4(a+b)为定值,a+b为定值.矩形对角线的交点与原点O重合k= AB? AD=ab,又a+b为定值时,当a=b时,ab最大,在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选C.【点评】: 本题考查了矩形的性质,反比例函数比例系数k的几何意义及不等式的性质,有一定难度.根据题意得出k= AB? AD=ab是解题的关键.“师”之概念,大体是从先秦时期的“
11、师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。说文解字中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于史记,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知
12、识,更重于传播知识。7、(2019年山东泰安第17题)已知函数y=(xm)(xn)(其中m唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。A.m+n0 C.m-n0家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。【分析】: 根据二次函数图象判断出m第 8 页