ImageVerifierCode 换一换
格式:PPT , 页数:34 ,大小:846KB ,
资源ID:196323      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-196323-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2013届新课标高中数学(理)第一轮总复习第10章 第57讲 平面的基本性质与空间两条直线的位置关系.ppt)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2013届新课标高中数学(理)第一轮总复习第10章 第57讲 平面的基本性质与空间两条直线的位置关系.ppt

1、1.AlAaBlBalaAaAbBaBbabABablaAlAaABCaABCbABCab 下列四个命题:,;,或 与 重合;,;、,、且、不共线与重合其中假命题有 123是公理;是公理;是公理 的应用,故都正确,只有解析:不正确02.下列四个命题:平面的形状一般是平行四边形;四条边相等的四边形是菱形;有三个公共点的两个平面重合;空间四点中任何三点不共线,则此四点不共面其中正确命题的个数有个四个命题均为假命题平面无形状;四边相等的四边形可以是空间四边形;两平面相交,三个公共点在交线上;平面四边形的四个顶点符合任何三点解析:不共线.3.abbcacabbcac 下列四个命题:若直线 与 相交,直

2、线 与 相交,则与 一定相交;若、是异面直线,、是异面直线,则、一定是异面直线;没有公共点的两条直线一定平行;不相交也不平行的直线是异面直线其中真命题有 13或 矩形.5.4.两两平行的三条直线可以确定个平面 空间四边形的两条对角线互相垂直,顺次连接四条边的中点所成的四边形是平面的基本性质【例1】回答下列问题:(1)不重合的三条直线相交于一点,最多能确定多少个平面;若相交于两点,又最多能确定多少个平面?(2)分别和两条异面直线都相交的两直线的位置关系是怎样的?【解析】(1)依据“两条相交直线可确定一个平面”知:不重合的三条直线相交于一点,最多能确定3个平面若三条直线相交于两点,则最多能确定2个

3、平面(这里有两条直线为异面直线)(2)不妨设a、b为异面直线,直线c分别与a、b交于点A、B,直线d分别与a、b交于点C、D.若A、C重合或B、D重合,则直线c、d相交;若A与C和B与D均不重合,则c、d异面(否则,c、d共面,不妨设c、d共面于平面,则c、d,所以A、B、C、D.又A、Ca,B、Db,所以a、b,与a、b异面矛盾!)(1)中若去掉“最多”二字,则前者结论是1或3;后者结论是1或2.(2)题不易从正面说清,因而用反证法,体现“正难则反”的思维规律【变式练习1】在正方体ABCDA1B1C1D1中,M、N分别是A1B1和CC1的中点请画出平面DMN与平面BB1C1C及平面ABB1A

4、1的交线【解析】如图,平面DMN平面BB1C1CPN,平面DMN平面ABB1A1RM.共点、共线、共面问题【例2】如 图,在 正 方 体 ABCDA1B1C1D1中,E是AB的中点,F是A1A的中点,求证:(1)E、C、D1、F四点共面;(2)CE、D1F、DA三线共点【解析】(1)连结A1B、CD1.因为E是AB的中点,F是A1A的中点,则EFA1B.又在正方体ABCDA1B1C1D1中,A1BD1C,所以EFD1C.故E、C、D1、F四点共面(2)由(1)知,EFD1C且EFD1C,故四边形ECD1F是梯形,两腰CE、D1F相交,设其交点为P,则PCE.又CE平面ABCD,所以P平面ABC

5、D.同理,P平面ADD1A1.又平面ABCD平面ADD1A1AD,所以PAD,所以CE、D1F、DA三线共点公理体系是整个立体几何的基础,是空间线面位置关系的支撑,是学生形成空间想象能力的基本依据熟练掌握四个公理及其推论,是解决共点、共线、共面问题的关键公理1是判断一条直线是否在某个平面的依据;公理2是证明三线共点或三点共线的依据要能够熟练用文字语言、符号语言、图形语言来表示公理;公理3及其推论(过直线和直线外一点、两条相交直线、两条平行直线有且只有一个平面)是判断或证明点线共面的依据2=2.ABCDEFABCBGHCDADCGAHGDHDEHBDFG如图,空间四边形中,、分别是和的中点,、分

6、别是【变式练习和上的点,且求证:、】相交于同一点1.221.3.EFACEFABCBEFACEFACCGAHHGGDHDHGACHGACEFHGEFHGEFGHEHFGKEHABDFGCBDABDCBDBDKBDEHBDFG连结,因为、分别是和的中点,所以且连结,又,所以且所以且所以是梯形设两腰所在直线,因为平面,平面且平面平面,所以则、相交于【证明】同一点【例3】一个正方体的纸盒展开后如图在原正方体的纸盒中有下列结论:ABEF;AB与CM成60角;EF与MN是异面直线;MNCD.其中正确的是_空间两条直线的位置关系【解析】原正方体如图所示,AB可平行移动到CM位置,即ABCM.在正方形CEM

7、F中,CMEF,故ABEF,正确,错误;同理,MNCD,故错误,只有正确答案:本题考查学生的空间想象能力解决问题的关键是将其还原成正方体,要注意字母的相应位置千万不能搞错空间两条直线的位置关系有三种:平行、相交和异面对于异面直线,考纲泛读也仅仅是了解而已,但也必须会判断,这对理解两条异面直线的垂直问题有很大帮助【变式练习3】如图是正方体的平面展开图,则这个正方体中:BM与ED平行;CN与BM成60角;BE与CN是异面直线;DMBN.其中正确命题的序号为_.【解析】将平面展开图还原成正方体,如图所示观察图形知,错,因为BM与ED垂直;对连结BE、EM.因为CNBE,故EBM是异面直线CN、BM所

8、成的角在正三角形EBM中,EBM60,故CN与BM成60角;错,因为BE与CN是平行直线;对,因为CN为BN在平面CDNM内的射影,且CNDM,所以BNDM.综上,正确命题的序号是.1.下列四个命题:经过三点确定一个平面;经过一条直线和一个点确定一个平面;四边形确定一个平面;两两相交且不共点的三条直线确定一个平面其中真命题为_.【解析】经过不在同一直线上的三点确定一个平面;经过一条直线和直线外的一点确定一个平面;空间的四边形不可能确定一个平面2.已知a、b、c是三条不同的直线,有下列四个命题:若ab,bc,则ac;若a与b是异面直线,c与b是异面直线,则a与c是异面直线;若ab,bc,则ac;

9、若ac,a与b是异面直线,则b与c是异面直线其中真命题为_.3.下列各图是正方体或正四面体(四个面都是正三角形的四面体),P、Q、R、S分别是所在棱的中点,则这四点不共面 的 一 个 图 形 是_.【解 析】正 方 体 ABCD A1B1C1D1 中,因 为PSA1C1QR,所以P、Q、R、S共面,如下图(1),排除.如图(2),(1)(2)(3)正方体ABCDA1B1C1D1中,E、F分别为AA1、BC的中点,则PEQFRS为正六边形,所以P、Q、R、S共面,排除.如图(3),因为PQABSR,所以P、Q、R、S共面,排除.故选.4.已知直线l与三条平行线a、b、c都相交求证:l与a、b、c

10、共面./.,/.alAblBclCababalAa Bbbcbclblcabcl 设,、确定平面、确定平面,同理可证所以、均过相交直线、重合、【证明、】共面5.如图,在三棱锥ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点(1)求证:四边形EFGH是平行四边形;(2)若ACBD,求证:四边形EFGH是菱形;(3)当AC与BD满足什么条件时,四边形EFGH是正方形 11/.21/.2/.ABCEFABBCEFACGHACEFGHEFGH证明:在中,、分别是边、的中点,所以 同理,所以 故四边形是平行【解析】四边形V 121/.2.3290.“”EHBDACBDEHEFEFGHEFG

11、HACBDEFGHEFGHEFGEFGACBDACBDACBDACBDEFGH证明:仿中分析,知若,则有又因为四边形是平行四边形,所以四边形是菱形由知,由,得四边形是菱形欲证菱形是正方形,还要得到而是异面直线、所成的角,故还要加上条件所以,当且时,四边形是正方形本节是立体几何的基础内容,四个公理及其推论是判断共线、共面的依据,也是将空间问题平面化的主要依据(1)证明点线共面的常用方法:一是依据题中所给条件先确定一个平面,然后证明其余的点或线都在面内;二是将所有元素分成几个部分,然后分别确定几个平面,再证这些平面重合;三是采用反证法(2)证明三线共点:可以证明两条直线的交点在第三条直线上,而第三条直线往往是两个平面的交线(3)善于利用长方体模型判别空间中点线面的位置关系(4)异面直线的证明常用反证法,具体思路是先否定结论,再依据已知的公理、定理、题中的条件寻找矛盾,最后肯定证明的结论判断异面直线时通常还采用排除法(不相交不平行)或判定定理(过平面内一点与平面外一点的连线与平面内不经过该点的直线是异面直线)5(02 对于异面直线所成角,知道角的范围是,以及两直线垂直的定义,平移法是解决此类问题的关键

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3