1、学业分层测评(十三)(建议用时:45分钟)学业达标一、填空题1已知数列an的前n项和Snn2n,那么它的通项公式为an_.【解析】当n2时,anSnSn1(n2n)(n1)2(n1)2n;当n1时,a1S12也适合上式,an2n(nN*)【答案】2n(nN*)2数列an的通项公式an,若前n项的和为10,则项数n为_【解析】an,Sn110,n120.【答案】1203若数列an的通项公式为an(1)n,则其前9项的和S9_.【解析】S9(11)(11)(11)(11)11.【答案】14若an的前n项和为Sn,若an,则S5_.【解析】an,S511.【答案】5设数列an的通项公式为an2n10
2、(nN*),则|a1|a2|a15|_.【解析】由an2n10(nN*)知an是以8为首项,2为公差的等差数列,又由an2n100得n5,当n5时,an0,当n5时,an0,|a1|a2|a15|(a1a2a3a4)(a5a6a15)20110130.【答案】1306若数列an的通项公式是an(1)n(3n2),则a1a2a10_. 【导学号:91730047】【解析】a1a2a1014710(1)10(3102)(14)(710)(1)9(392)(1)10(3102)3515.【答案】157(2016南京高二检测)已知等差数列an的前n项和为Sn,a55,S515,则数列的前100项和为_
3、【解析】由题意可知a11,d1,ann,.数列的前100项和为1.【答案】8666666666 _.【解析】设an6666(10n1),Sn(10110210n)nn.【答案】二、解答题9设数列an的前n项和为Sn,a11,且数列Sn是以2为公比的等比数列(1)求数列an的通项公式;(2)求a1a3a2n1.【解】(1)因为S1a11,且数列Sn是以2为公比的等比数列,所以Sn2n1,又当n2时,anSnSn12n2(21)2n2,所以an(2)a3,a5,a2n1是以2为首项,以4为公比的等比数列,所以a3a5a2n1,所以a1a3a2n11.10(2015浙江高考)已知数列an和bn满足a
4、12,b11,an12an(nN*),b1b2b3bnbn11(nN*)(1)求an与bn;(2)记数列anbn的前n项和为Tn,求Tn.【解】(1)由a12,an12an,得an2n(nN*)由题意知:当n1时,b1b21,故b22.当n2时,bnbn1bn,整理得,所以bnn(nN*)(2)由(1)知anbnn2n,因此Tn2222323n2n,2Tn22223324n2n1,所以Tn2Tn222232nn2n1,故Tn(n1)2n12(nN*)能力提升1古诗云:远望巍巍塔七层,红光点点倍加增共灯三百八十一,请问尖头几盏灯?_.(填数字)【解析】远望巍巍塔七层,说明该数列共有7项,即n7.
5、红光点点倍加增,说明该数列是公比为2的等比数列共灯三百八十一,说明7项之和S7381.请问尖头几盏灯,就是求塔顶几盏灯,即求首项a1.代入公式Sn,即381,a13.此塔顶有3盏灯【答案】32在数列an中,a12,an1anln,则an_. 【导学号:91730048】【解析】an1anln,an1anlnlnln(n1)ln n.又a12,ana1(a2a1)(a3a2)(a4a3)(anan1)2ln 2ln 1ln 3ln 2ln 4ln 3ln nln(n1)2ln nln 12ln n.【答案】2ln n3已知函数f(n)且anf(n)f(n1),则a1a2a3a100等于_【解析】
6、a1a2a3a100f(1)f(2)f(2)f(3)f(100)f(101)(1222)(2232)(3242)(10021012)357999101250100.【答案】1004n2(n4)个正数排成n行n列:a11a12a13a14a1na21a22a23a24a2na31a32a33a34a3n an1an2an3an4an n其中第一行的数成等差数列,每一列中的数成等比数列,并且所有公比相等,已知a241,a42,a43,求a11a22a33an n.【解】设第一行的公差为d,各列公比为q,则得a1ka11(k1)d,a24a14q(a113d)q1,a42a12q3(a11d)q3,a43a13q3(a112d)q3,由,解得a11dq.akka1kqk1a11(k1)dqk1.设Sna11a22a33an n,则Sn,Sn,得,Sn1.Sn2,即a11a22a33an n2.