1、第2讲 双曲线 知识梳理1. 双曲线的定义(1)第一定义:当时, 的轨迹为双曲线; 当时, 的轨迹不存在; 当时, 的轨迹为以为端点的两条射线(2)双曲线的第二义: ;(双曲线上的动点到焦点的距离与到相应准线的距离相互转化).解析:平面内到定点与定直线(定点不在定直线上)的距离之比是常数()的点的轨迹为双曲线2. 双曲线的标准方程与几何性质标准方程性质焦点, 焦距范围顶点对称性关于x轴、y轴和原点对称离心率准线渐近线与双曲线共渐近线的双曲线系方程为:与双曲线共轭的双曲线为等轴双曲线的渐近线方程为 ,离心率为.; 重难点突破重点:了解双曲线的定义、标准方程,会运用定义和会求双曲线的标准方程,能通
2、过方程研究双曲线的几何性质难点: 双曲线的几何元素与参数之间的转换重难点:运用数形结合,围绕“焦点三角形”,用代数方法研究双曲线的性质,把握几何元素转换成参数的关系1.注意定义中“陷阱”问题1:已知,一曲线上的动点到距离之差为6,则双曲线的方程为 点拨:一要注意是否满足,二要注意是一支还是两支的轨迹是双曲线的右支.其方程为2.注意焦点的位置问题2:双曲线的渐近线为,则离心率为 点拨:当焦点在x轴上时,;当焦点在y轴上时,热点考点题型探析考点1 双曲线的定义及标准方程题型1:运用双曲线的定义例1 (2004广东) 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一
3、声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上)【解题思路】时间差即为距离差,到两定点距离之差为定值的点的轨迹是双曲线型的解析如图,以接报中心为原点O,正东、正北方向为x轴、y轴正向,建立直角坐标系.设A、B、C分别是西、东、北观测点,则A(1020,0),B(1020,0),C(0,1020)设P(x,y)为巨响为生点,由A、C同时听到巨响声,得|PA|=|PC|,故P在AC的垂直平分线PO上,PO的方程为y=x,因B点比A点晚4s听到爆炸声,故|PB|
4、 |PA|=3404=1360由双曲线定义知P点在以A、B为焦点的双曲线上,ABCPOxy依题意得a=680, c=1020,用y=x代入上式,得,|PB|PA|,答:巨响发生在接报中心的西偏北450距中心处.【名师指引】解应用题的关键是将实际问题转换为“数学模型”【新题导练】1. (吉林省长春市2008年高中毕业班第一次调研)设P为双曲线上的一点F1、F2是该双曲线的两个焦点,若|PF1|:|PF2|=3:2,则PF1F2的面积为( )AB12CD24解析: 又由、解得直角三角形,故选B。2. (2008广州二模文)如图2所示,为双曲线的左焦点,双曲线上的点与关于轴对称,则的值是( )A9
5、B16 C18 D27 解析 ,选C3. (广州市越秀区2009 届高三摸底测试) P是双曲线左支上的一点,F1、F2分别是左、右焦点,且焦距为2c,则的内切圆的圆心的横坐标为( )(A)(B)(C)(D)解析设的内切圆的圆心的横坐标为,由圆的切线性质知, 题型2 求双曲线的标准方程例2 已知双曲线C与双曲线=1有公共焦点,且过点(3,2).求双曲线C的方程【解题思路】运用方程思想,列关于的方程组解析 解法一:设双曲线方程为=1.由题意易求c=2.又双曲线过点(3,2),=1.又a2+b2=(2)2,a2=12,b2=8.故所求双曲线的方程为=1.解法二:设双曲线方程为1,将点(3,2)代入得
6、k=4,所以双曲线方程为1.【名师指引】求双曲线的方程,关键是求a、b,在解题过程中应熟悉各元素(a、b、c、e及准线)之间的关系,并注意方程思想的应用.【新题导练】4.(广州六中2008-2009学年度高三期中考试)已知双曲线的渐近线方程是,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ; 解析设双曲线方程为,当时,化为,当时,化为,综上,双曲线方程为或5. (2008年上海市高三十校联考)以抛物线的焦点为右焦点,且两条渐近线是的双曲线方程为_.解析 抛物线的焦点为,设双曲线方程为,双曲线方程为6. (2008中山市一中第一次统测) 已知点,动圆与直线切于点,过、与圆相切的两直线相交于点,
7、则点的轨迹方程为A BC(x 0) D解析,点的轨迹是以、为焦点,实轴长为2的双曲线的右支,选B考点2 双曲线的几何性质题型1 求离心率或离心率的范围例3 已知双曲线的左,右焦点分别为,点P在双曲线的右支上,且,则此双曲线的离心率e的最大值为 【解题思路】这是一个存在性问题,可转化为最值问题来解决解析(方法1)由定义知,又已知,解得,在中,由余弦定理,得,要求的最大值,即求的最小值,当时,解得即的最大值为(方法2) ,双曲线上存在一点P使,等价于 (方法3)设,由焦半径公式得,的最大值为【名师指引】(1)解法1用余弦定理转化,解法2用定义转化,解法3用焦半径转化;(2)点P在变化过程中,的范围
8、变化值得探究;(3)运用不等式知识转化为的齐次式是关键【新题导练】7. (山东省济南市2008年2月高三统一考试)已知双曲线的一条渐近线方程为,则该双曲线的离心率为 解析当时,当时,或8. (2008届华南师范大学附属中学、广东省实验中学、广雅中学、深圳中学四校联考)已知双曲线的右顶点为E,双曲线的左准线与该双曲线的两渐近线的交点分别为A、B两点,若AEB=60,则该双曲线的离心率e是( )A B2 C或2 D不存在解析设双曲线的左准线与x轴交于点D,则,题型2 与渐近线有关的问题例4 (2007汕头)若双曲线的焦点到渐近线的距离等于实轴长,则双曲线的离心率为 ( )A. B. C. D.【解
9、题思路】通过渐近线、离心率等几何元素,沟通的关系解析 焦点到渐近线的距离等于实轴长,故,,所以【名师指引】双曲线的渐近线与离心率存在对应关系,通过的比例关系可以求离心率,也可以求渐近线方程【新题导练】9. 双曲线的渐近线方程是 ( )A. B. C. D. 解析选C10. (湖南师大附中2009届第三次月考)焦点为(0,6),且与双曲线有相同的渐近线的双曲线方程是 ( )A B C D解析从焦点位置和具有相同的渐近线的双曲线系两方面考虑,选B抢分频道基础巩固训练1. 以椭圆的右焦点为圆心,且与双曲线的渐近线相切的圆的方程是 (A) (B) (C) (D)解析椭圆与双曲线共焦点,焦点到渐近线的距
10、离为b,选A 2. (2008深圳二模)已知双曲线的两个焦点为、,是此双曲线上的一点,且满足,则该双曲线的方程是()A B C D 解析由 和得,选A3. (2008揭阳一模)两个正数a、b的等差中项是,一个等比中项是,且则双曲线的离心率为( ) A B C D解析 ,选B4. (2008珠海一模)设,分别为具有公共焦点与的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为( C )A B1C2D不确定解析 C. 设,5. (2008珠海质检)已知F1,F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若ABF2是锐角三角形,则该双曲线离心率的取值范围是(
11、 )(A). (B). (C). (D).解析 ,选B6. (山东省滨州市2008年高三第一次复习质量检测)曲线与曲线的( )A焦距相等 B焦点相同 C离心率相等 D以上都不对解析 方程的曲线为焦点在x轴的椭圆,方程的曲线为焦点在y轴的双曲线,故选A综合提高训练7. 已知椭圆和双曲线有公共的焦点,(1)求双曲线的渐近线方程(2)直线过焦点且垂直于x轴,若直线与双曲线的渐近线围成的三角形的面积为,求双曲线的方程 解析(1)依题意,有,即,即双曲线方程为,故双曲线的渐近线方程是,即,(2)设渐近线与直线交于A、B,则,解得即,又,双曲线的方程为8. (执信中学2008-2009学年度第一学期高三期
12、中考试节选)已知是双曲线的左,右焦点,点是双曲线右支上的一个动点,且的最小值为,双曲线的一条渐近线方程为. 求双曲线的方程;解析,.的一条渐进线方程为 ,又 由得9. (湖南省湘潭市2009届高三第一次模拟考试)已知中心在原点的双曲线C的右焦点为,右顶点为.()求双曲线C的方程()若直线与双曲线恒有两个不同的交点A和B且(其中为原点),求k的取值范围解(1)设双曲线方程为由已知得,再由,得故双曲线的方程为.(2)将代入得 由直线与双曲线交与不同的两点得 即且. 设,则,由得,而.于是,即解此不等式得 由+得故的取值范围为参考例题:已知双曲线C:的两个焦点为,点P是双曲线C上的一点,且(1)求双曲线的离心率;(2)过点P作直线分别与双曲线的两渐近线相交于两点,若,求双曲线C的方程(1)设,则,(2)由(1)知,故,从而双曲线的渐近线方程为,依题意,可设,由,得 由,得,解得点在双曲线上,又,上式化简得 由,得,从而得故双曲线C的方程为