1、八年级数学上册第十一章实数和二次根式综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各数中,与1最接近的是()A0.4B0.6C0.8D12、对于数字-2+,下列说法中正确的是()A它不能用数
2、轴上的点表示出来B它比0小C它是一个无理数D它的相反数为2+3、一个正数的两个平方根分别是2a-1与-a+2,则a的值为()A1B-1C2D-24、下列各数中,比3大比4小的无理数是()A3.14BCD5、若有意义,则(n)2的平方根是()ABCD6、若式子有意义,则实数m的取值范围是()Am2Bm2且m1Cm2Dm2且m17、在实数:3.14159,1.010 010 001,中,无理数有()A1个B2个C3个D4个8、下列等式成立的是()ABCD9、下列二次根式中能与2合并的是()ABCD10、估计的值应在()A1和2之间B2和3之间C3和4之间D4和5之间第卷(非选择题 70分)二、填空
3、题(5小题,每小题4分,共计20分)1、一个正数a的两个平方根是和,则的立方根为_2、若a1,化简_3、已知:,则_4、的有理化因式可以是_(只需填一个)5、如图所示,直径为个单位长度的圆从原点沿着数轴负半轴方向无滑动的滚动一周到达点,则点表示的数是_三、解答题(5小题,每小题10分,共计50分)1、2、计算:(1);(2)3、已知长方形的长为72cm,宽为18cm,求与这个长方形面积相等的正方形的边长4、正数x的两个平方根分别为3a和2a+7(1)求a的值;(2)求44x这个数的立方根5、计算:(1);(2)-参考答案-一、单选题1、C【解析】【分析】先估算接近的数,再减去1即可【详解】1.
4、51.740.510.74故选:C【考点】本题考查无理数的估值,理解算术平方根的概念是关键,了解二分法是难点2、C【解析】【分析】根据数轴的意义,实数的计算,无理数的定义,相反数的定义判断即可【详解】A数轴上的点和实数是一一对应的,故该说法错误,不符合题意;B,故该说法错误,不符合题意;C是一个无理数,故该说法正确,符合题意;D的相反数为,故该说法错误,不符合题意;故选:C【考点】本题考查数轴的意义,实数的计算,无理数的定义,相反数的定义,熟练掌握相关计算法则是解答本题的关键3、B【解析】【分析】根据一个正数的两个平方根互为相反数得到关于a的一元一次方程,求解即可【详解】解:根据题意可得:,解
5、得,故选:B【考点】本题考查了平方根的概念,正确理解一个正数的两个平方根的关系,求得a的值是关键4、C【解析】【分析】根据无理数的定义找出无理数,再估算无理数的范围即可求解【详解】解:四个选项中是无理数的只有和,而1742,3212424,34选项中比3大比4小的无理数只有故选:C【考点】此题主要考查了无理数的定义和估算,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数5、D【解析】【详解】试题解析:有意义, 解得: 的平方根是: 故选D6、D【解析】【分析】根据二次根式有意义的条件即可求出答案【详解】由题意可知:,m2且m1,故选D【考点】本题考查二次根式有意义的条件,解题的关
6、键是熟练运用二次根式的条件.7、B【解析】【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:,在实数:3.14159,1.010010001,中,无理数有1.010010001,共2个故选:B【考点】本题主要考查了无理数的定义,掌握无理数的定义是解题的关键,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数8、D【解析】【分析】根据算术平方根、立方根、二次根式的化简等概念分别判断【详解】解:A. ,本选项
7、不成立;B. ,本选项不成立;C. =,本选项不成立;D. ,本选项成立.故选:D.【考点】本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键9、B【解析】【分析】先化简选项中各二次根式,然后找出被开方数为3的二次根式即可【详解】A、2,不能与2合并,故该选项错误;B、能与2合并,故该选项正确;C、3不能与2合并,故该选项错误;D、3不能与2合并,错误;故选B【考点】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键10、B【解析】【详解】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详
8、解】=,=,而,45,所以23,所以估计的值应在2和3之间,故选B.【考点】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.二、填空题1、2【解析】【分析】根据一个正数的平方根互为相反数,将和相加等于0,列出方程,解出b,再将b代入任意一个平方根中,进行平方运算求出这个正数a,将算出后,求立方根即可【详解】和是正数a的平方根,解得 ,将b代入,正数 ,的立方根为:,故填:2【考点】本题考查正数的平方根的性质,求一个数的立方根,解题关键是知道一个正数的两个平方根互为相反数2、a【解析】【分析】根据a的范围,a10,化简二次根式即可【详解】解:a1,a
9、10,|a1|1(a1)1a11a故答案为:a【点评】本题考查了二次根式的性质与化简,对于的化简,应先将其转化为绝对值形式,再去绝对值符号,即3、6【解析】【分析】根据二次根式的运算法则即可求解【详解】a=3,b=26故答案为:6【考点】此题主要考查二次根式的运算,解题的关键是熟知其运算法则4、【解析】【分析】根据平方差公式和有理化因式的意义即可得出答案【详解】解:,的有理化因式为,故答案为:【考点】本题考查分母有理化,理解有理化因式的意义和平方差公式是正确解答的关键5、-【解析】【分析】直接利用圆的周长公式得出圆的周长,再利用对应数字性质得出答案【详解】由题意可得:圆的周长为,直径为单位1的
10、硬币从原点处沿着数轴负半轴无滑动的逆时针滚动一周到达A点,A点表示的数是:-故答案为:-【考点】此题考查了数轴的特点及圆的周长公式,正确得出圆的周长是解题的关键三、解答题1、6【解析】【分析】根据二次根式的乘方运算、绝对值的性质、零指数幂、负整数指数幂化简,再根据实数的混合运算法则计算即可【详解】解:【考点】本题考查了含二次根式的乘方,绝对值,零指数幂,负整数指数幂的实数混合运算;掌握好相关的基础知识是关键2、 (1)(2)【解析】【分析】(1)先化简,再合并同类二次根式;(2)先化简括号内二次根式再合并,再利用二次根式乘法计算即可(1)解: ;(2)解:【考点】本题考查了二次根式的混合运算,
11、掌握二次根式的性质是解本题的关键3、36cm【解析】【分析】首先求出长方形面积,进而得出正方形的边长【详解】因为长方形的长为72 cm,宽为18 cm,所以这个长方形面积为:72181296(cm2),所以与这个长方形面积相等的正方形的边长为:36(cm),答:正方形的边长为36 cm.【考点】此题主要考查了算术平方根的定义以及矩形、正方形面积求法,正确开平方是解题关键4、(1) a10;(2)44x的立方根是5【解析】【分析】(1)理解一个正数有几个平方根及其两个平方根间关系:一个正数有两个平方根,它们互为相反数,求出a的值;(2)根据a的值得出这个正数的两个平方根,即可得出这个正数,计算出44-x的值,再根据立方根的定义即可解答.【详解】解:(1)由题意得:3a2a70,a10,(2)由(1)可知a10,x169,则44x125,44x的立方根是-5.【考点】此题考查了立方根,平方根,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根5、 (1)(2)【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并同类项;(2)利用平方差和完全平方公式计算(1)原式(2)原式【考点】本题考察了二次根式的混合运算和乘法公式先把二次根式化为最近二次根式,然后再合并同类项,平方差公式,完全平方公式,正确化简二次根式和使用乘法公式是解题的关键