ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:852.50KB ,
资源ID:194418      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-194418-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(四川省成都石室中学2013届高三下学期“三诊”模拟考试数学(理)试题 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

四川省成都石室中学2013届高三下学期“三诊”模拟考试数学(理)试题 WORD版含答案.doc

1、石室中学高2013届三诊模拟试题(理科)(时间:120分钟 满分:150分)一、选择题(共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求请将你认为正确的选项答在指定的位置上。)1已知集合,则( )ABCD2设(是虚数单位),则 ( )A B C D 3.若多项式,则 ( ) 4一个几何体的三视图如右图所示,且其左视图是一个等边三角形,则这个几何体的体积为( )A BC D5设,且,则z的最小值是( )A. B. C. D. 6.若为不等式组 表示的平面区域,则当从连续变化到时,动直线扫过中的那部分区域的面积为 ( ) xABPyOA. B. 1 C. D. 2

2、7函数的部分图象如右图所示,设是图象的最高点,是图象与轴的交点,记,则的值是( )A B C D8下列命题中:“”是“”的充要条件; 若“”,则实数的取值范围是;已知平面,直线,若,则函数的所有零点存在区间是.其中正确的个数是( )A1B2 C3 D49.某教师一天上3个班级的课,每班一节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节不算连上),那么这位教师一天的课的所有排法( )A474种 B. 77种 C462种 D79种10已知函数,方程有四个实数根,则的取值范围为( ) A B C D 二、填空题(本题共5道小题,每题5分,共25分;将答案直接答在答题卷上

3、指定的位置)11从1,2,3,4,5中任取2个不同的数,事件A“取到的2个数之和为偶数”,事件B“取到的2个数均为偶数”,则P(B|A)等于 12下图给出了一个程序框图,其作用是输入的值,输出相应的值若要使输入的值与输出的值相等,则这样的值有_个.13已知在平面直角坐标系中,为原点,且(其中均为实数),若N(1,0),则的最小值是 ;14.已知双曲线的右焦点为,过且斜率为的直线交于、两点,若,则双曲线的离心率为 15.设函数的定义域为,若存在非零实数满足,均有,且,则称为上的高调函数如果定义域为的函数是奇函数,当时,且为上的高调函数,那么实数的取值范围是 .三、解答题(本大题共75分,解答应写

4、出文字说明,证明过程或演算步骤):16.(本小题满分12分)已知向量,函数(1)求函数的最小正周期T及单调减区间;(2)已知a,b,c分别为ABC内角A,B,C的对边,其中A为锐角,,且.求A,的长和ABC的面积.17.(本题满分12分)如图,为圆的直径,点、在圆上,矩形所在的平面和圆所在的平面互相垂直,且,.()求证:平面;()求三棱锥的体积;(III)求二面角的大小.18(本小题满分12分)小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,

5、6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为,且每个问题回答正确与否相互独立.(1)求小王过第一关但未过第二关的概率; (2)用X表示小王所获得奖品的价值,写出X的概率分布列,并求X的数学期望.19.(本小题满分12分)各项均为正数的数列前项和为,且.(1)求数列的通项公式;(2)已知公比为的等比数列满足,且存在满足,求数列的通项公式.20.(本小题满分13分)已知椭圆的长轴长是短轴长的两倍,焦距为.(1)求椭圆的标准方程;(2)设不过原点的直线与椭圆交于两点、,且直线、的斜率依次成等比数列,求面积的取值范围.21(本小题满分14分)已知,且直线与曲线相切(1)若对

6、内的一切实数,不等式恒成立,求实数的取值范围;(2)当时,求最大的正整数,使得对(是自然对数的底数)内的任意个实数都有成立;(3)求证:三诊模拟参改答案(理科)1-10:ABDBB CACAB11-15: ,3, ,16.(本小题满分12分)已知向量,函数(1)求函数的最小正周期T及单调减区间;(2)已知a,b,c分别为ABC内角A,B,C的对边,其中A为锐角,,且.求A,的长和ABC的面积.16.解析:(1)(2分) (4分)单调递减区间是 (6分)(2); 8分) (10分). (12分)17.(本题满分12分)如图,为圆的直径,点、在圆上,矩形所在的平面和圆所在的平面互相垂直,且,.()

7、求证:平面;()求三棱锥的体积;理(III)求二面角的大小.17()证明:平面平面,,平面平面,平面, AF在平面内, 3分又为圆的直径, 平面. 6分()解:由(1)知即,三棱锥的高是,,8分连结、,可知为正三角形,正的高是,10分,10分(III)求二面角的大小为.1218理.(本小题满分12分)小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为,且每个问题回答正确与否

8、相互独立.(1)求小王过第一关但未过第二关的概率; (2)用X表示小王所获得奖品的价值,写出X的概率分布列,并求X的数学期望.18.解析:(1)设小王过第一关但未过第二关的概率为P1,则P12. (4分)(2)X的取值为0,1000,3000, 6000,则P(X0),P(X1000)2, P(X3000)22,P(X6000)22,X的概率分布列为X0100030006000P(10分).X.X.KX的数学期望EX01000300060002160. (12分)19.(本小题满分12分)各项均为正数的数列前项和为,且.(1)求数列的通项公式;(2)已知公比为的等比数列满足,且存在满足,求数列

9、的通项公式.19.解析:(1),两式相减得:,(2分)即,(4分)为首项为1,公差为2的等差数列,故(6分)(2),依题意得,相除得(8分),代入上式得q=3或q=7,(10分)或.(12分)20.(本小题满分13分)已知椭圆的长轴长是短轴长的两倍,焦距为.(1)求椭圆的标准方程;(2)设不过原点的直线与椭圆交于两点、,且直线、的斜率依次成等比数列,求面积的取值范围.20.(本小题满分13分)已知椭圆的长轴长是短轴长的两倍,焦距为.(1)求椭圆的标准方程;(2)设不过原点的直线与椭圆交于两点、,且直线、的斜率依次成等比数列,求面积的取值范围.20.解析:(1)由已知得 方程: (4分)(2)由

10、题意可设直线的方程为: 联立 消去并整理,得:则 ,此时设、于是 (7分)又直线、的斜率依次成等比数列, 由 得: .又由 得:显然 (否则:,则中至少有一个为0,直线、 中至少有一个斜率不存在,矛盾!) (10分)设原点到直线的距离为,则故由得取值范围可得面积的取值范围为(13分)21理.(本小题满分14分)已知,且直线与曲线相切(1)若对内的一切实数,不等式恒成立,求实数的取值范围;(2)当时,求最大的正整数,使得对(是自然对数的底数)内的任意个实数都有成立;(3)求证:21.解:(1)设点为直线与曲线的切点,则有 (*), (*)由(*)、(*)两式,解得, 由整理,得,要使不等式恒成立,必须恒成立 设, 当时,则是增函数,是增函数, 因此,实数的取值范围是 (2)当时,在上是增函数,在上的最大值为要对内的任意个实数都有成立,必须使得不等式左边的最大值小于或等于右边的最小值,当时不等式左边取得最大值,时不等式右边取得最小值,解得因此,的最大值为 (3)证明:当时,根据(1)的推导有,时,即 令,得, 化简得,

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3