ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:498KB ,
资源ID:193752      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-193752-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《优教通同步备课》高中数学(北师大版)选修2-2教案:第2章 导数的概念及其几何意义 第三课时参考教案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《优教通同步备课》高中数学(北师大版)选修2-2教案:第2章 导数的概念及其几何意义 第三课时参考教案.doc

1、2 导数的概念及其几何意义第三课时 导数的几何意义(二)一、教学目标:掌握切线斜率由割线斜率的无限逼近而得,掌握切线斜率的求法二、教学重点,难点:(1)能体会曲线上一点附近的“局部以直代曲”的核心思想方法;(2)会求曲线上一点处的切线斜率三、教学方法:探析归纳,讲练结合四、教学过程(一)、问题情境1情境:设是曲线上的一点,将点附近的曲线放大、再放大,则点附近将逼近一条确定 的直线2问题:怎样找到在曲线上的一点处最逼曲线的直线呢?(二)、学生活动如上图直线为经过曲线上一点的两条直线(1)判断哪一条直线在点附近更加逼近曲线(2)在点附近能作出一条比更加逼近曲线的直线吗?(3)在点附近能作出一条比更

2、加逼近曲线的直线吗?(三)、建构数学1割线及其斜率:连结曲线上的两点的直线叫曲线的割线,设曲线上的一点,过点的一条割线交曲线于另一点,则割线的斜率为2 切线的定义:随着点沿着曲线向点运动,割线在点附近越来越逼近曲线。当点无限逼近点时,直线最终就成为在点处最逼近曲线的直线,这条直线也称为曲线在点处的切线;3 切线的斜率:当点沿着曲线向点运动,并无限靠近点时,割线逼近点处的切线,从而割线的斜率逼近切线的斜率,即当无限趋近于时,无限趋近于点处的切线的斜率(四)、数学运用1例题:例1已知曲线, (1)判断曲线在点处是否有切线,如果有,求切线的斜率,然后写出切线的方程 (2)求曲线在处的切线斜率。分析:

3、(1)若是曲线上点附近的一点,当沿着曲线无限接近点时,割线的斜率是否无限接近于一个常数若有,则这个常数是曲线在点处的切线的斜率;(2)为求得过点的切线斜率,我们从经过点的任意一点直线(割线)入手。 解:(1)在曲线上点附近的取一点,设点的横坐标为,则函数的增量为,割线的斜率为,当无限趋近于时,无限趋近于常数2,曲线在点处有切线,且切线的斜率为,所求切线方程是,即 (2)设,则割线的斜率为当无限趋近于时,无限趋近于常数4,从而曲线在点处切线的斜率为。例2已知,求曲线在处的切线的斜率分析:为了求过点的切线的斜率,要从经过点的任意一条割线入手解:设,则割线的斜率:当无限趋近于时,无限趋近于常数1,曲线在点处有切线,且切线的斜率为例3已知曲线方程,求曲线在处的切线方程解:设是点附近的一点,当无限趋近于时,无限趋近于常数1,曲线在点处有切线,且切线的斜率为所求直线方程:2练习:练习 第 1,2,3题;习题2-2A组中 第 3题(五)回顾小结:求切线斜率一般步骤是:求函数增量与自变量增量的比;判断当无限趋近于时,是否无限趋近于一常数;求出这个常数(六)课外作业:1、补充:判断曲线在点处是否有切线?如果有,求出切线的方程 2、习题2-2中B组 1、2 五、教后反思:

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3