1、京改版八年级数学上册第十章分式定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、化简(a1)(1)a的结果是()Aa2B1Ca2D12、已知某新型感冒病毒的直径约为0.000000823米,将0.0
2、00000823用科学记数法表示为()A8.23106B8.23107C8.23106D8.231073、要把分式方程化为整式方程,方程两边要同时乘以()ABCD4、的结果是()ABCD15、在攻击人类的病毒中,某类新型冠状病毒体积较大,直径约为0.000 000 125米,含约3万个碱基, 拥有RNA病毒中最大的基因组,比艾滋病毒和丙型肝炎的基因组大三倍以上,比流感的基因组大两倍0.000000125用科学记数法表示为()A1.2510-6B1.2510-7C1.25106D1.251076、计算,则x的值是A3B1C0D3或07、若,则的值是ABCD8、(为正整数)的值是()ABCD9、关
3、于x的分式方程1的解为正数,则字母a的取值范围为()Aa1Ba1Ca1Da110、计算的结果是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若方程的解与方程的解相同,则_2、全民齐心协力共建共享文明城区建设某服装加工厂计划为环卫工人生产1200套冬季工作服,在加工完480套后,工厂引进了新设备,结果工作效率比原计划提高了20%,结果共用54天完成了全部生产任务若设该加工厂原计划每天加工x套冬季工作服,则根据题意列方程为_3、若关于x的分式方程+ = 2m无解,则m的值为_4、计算:()01_5、我国元代数学家朱世杰的著作四元玉鉴中记载“买椽多少”问题:“六
4、贯二百一十钱,请人去买几株椽,每株脚钱三文足,无钱准与一株椽”其大意为:用6210文钱请人代买一批椽如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是_三、解答题(5小题,每小题10分,共计50分)1、冰墩墩(如图)是2022年北京冬季奥运会的吉祥物某商店第一次用1200元购进冰墩墩手办若干个,第二次又用相同价格购进冰墩墩饰扣若干个,已知每个冰墩墩饰扣的进价是冰墩墩手办进价的,购进冰墩墩手办数量比饰扣少了10个(1)冰墩墩饰扣的进价是多少元?(2)若冰墩墩饰扣的售价要比冰墩墩手办的售价少30元,且销
5、售完毕后获利不低于1100元,问每个冰墩墩手办的售价至少是多少元?2、计算:(1);(2)3、北京冬奥会的吉祥物冰墩墩深受大家喜爱,出现“一墩难求”的现象负责生产冰墩墩硅胶外壳的公司收到了一笔48万个的订单,若按原计划生产的日产量计算,则完成这笔订单的生产时间将超过一年扩大生产规模后,日产量可提高到原来的30倍,生产时间能减少464天(1)扩大生产规模后每天生产多少个冰墩墩硅胶外壳?(2)该公司通过增加模具的方式提高日产量,本来只有两套模具,每套模具每天平均生产500个冰墩墩硅胶外壳,为达到扩大生产规模后的日产量,至少需要增加多少套模具?4、计算:5、某糕点加工点受资金和原料保质期等因素影响,
6、在购买主要原料面包粉和蛋糕粉时需分次购买下表是该店最近三次购进原料的数量与总金额,其中前两次是按原价购买,第三次享受了优惠第一次第二次第三次面包粉(袋)235蛋糕粉(袋)458总金额(元)520700912(1)第三次购买的总金额比按原价购买节省了多少钱?(2)该店第四次购买原料时,按照第三次购买的经验,预算912元,仍需购买5袋面包粉和8袋蛋糕粉在接洽的过程中,发现优惠方式又发生了变化,相较于原价,每袋蛋糕粉降低的价格是每袋面包粉降低的价格的两倍,这时用576元能够买到面包粉的袋数是蛋糕粉袋数的预算够吗?-参考答案-一、单选题1、A【解析】【分析】根据分式的混合运算顺序和运算法则计算可得【详
7、解】原式=(a1)a=(a1)a=a2,故选A【考点】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则2、B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000823=8.2310-7故选B【考点】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3、D【解析】【分析】根据最简公分母的确定方法确定分式的最简公分母即可解答.【详解】解:
8、分式的最简公分母2x(x-2),把分式方程化为整式方程,方程两边要同时乘以2x(x-2).故选D.【考点】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根4、B【解析】【分析】先计算分式的乘方,再把除法转换为乘法,约分后即可得解【详解】解:故选:B【考点】此题主要考查了分式的混合运算,熟练掌握运算法则是解答此题的关键5、B【解析】【分析】根据科学记数法的表示方法将原数表示为的形式,其中,n是正整数【详解】解:0.000000125=1.2510-7,故答案选:B【考点】本题考查了科学记数法,对于一个绝对值小于1的非0小数,用科学记数
9、法写成的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0)6、D【解析】【分析】根据实数的性质分类讨论即可求解【详解】当x=0,x-20时,即x=0;当x-2=1时,即x=3,故选D【考点】此题主要考查实数的性质,解题的关键是熟知负指数幂的运算法则7、C【解析】【详解】,b=a,c=2a,则原式.故选C.8、B【解析】【分析】根据分式的乘方计算法则解答【详解】故选:B【考点】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键9、B【解析】【详解】解:分式方程去分母得:2x-a=x+1,解得:x=a+1根据题意得:a+10且a+1+10
10、,解得:a-1且a-2即字母a的取值范围为a-1故选B点睛:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为010、A【解析】【详解】原式故选A.二、填空题1、【解析】【分析】求出第二个分式方程的解,代入第一个方程中计算即可求出a的值【详解】解:方程去分母得:3x6,解得:x2,经检验x2是分式方程的解,根据题意将x2代入第一个方程得:解得:,经检验是原分式方程的解,则故答案为:【考点】此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值2、【解析】【分析】设该加工厂原计划每天加工x套冬季工作服,则实际每天加工套,则按原计划的效率加工天,按提高后的工作效率加工天,从
11、而可得答案【详解】解:设该加工厂原计划每天加工x套冬季工作服,则提高效率后每天加工套, 故答案为:【考点】本题考查的是分式方程的应用,掌握利用分式方程解决工作量问题是解题的关键3、或1【解析】【分析】方程无解分两种情况:方程的根是增根去分母后的整式方程无解,去分母后分情况讨论即可.【详解】去分母得:x-4m=2m(x-4)若方程的根是增根,则增根为x=4把x=4代入得:4-4m=0解得:m=1去分母得:x-4m=2m(x-4)整理得:(2m-1)x=4m方程无解,故2m-1=0解得:m= m的值为或1故答案为:或1【考点】本题考查的是分式方程的无解问题,注意无解的两种情况是解答的关键.4、2【
12、解析】【分析】直接利用零指数幂的性质化简得出答案【详解】解:原式故答案为:2【考点】此题主要考查了实数运算,正确掌握运算法则是解题关键5、【解析】【分析】根据单价=总价 数量结合少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程,此题得解.【详解】依据题意,得:故答案为:【考点】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.三、解答题1、 (1)40(2)88【解析】【分析】(1)设冰墩墩手办的进价是x元,则每个冰墩墩饰扣的进价是元,根据题意列出分式方程求解得到的值,检验后再求得即可;(2)设每个冰墩墩手办的售价是y元,根据题意列不等式
13、即可求解(1)设冰墩墩手办的进价是x元,则每个冰墩墩饰扣的进价是元,根据题意列方程得,解得经检验是原分式方程的解,则答:冰墩墩饰扣的进价是40元(2)(2)设每个冰墩墩手办的售价是y元根据题意列不等式得,解得答:每个冰墩墩手办的售价至少是88元【考点】本题考查了分式方程和一元一次不等式的应用,读懂题意,找出等量关系和不等量关系列出方程和不等式是解题的关键2、(1);(2)【解析】【分析】(1)先计算有理数的乘方,零次幂,负整数指数幂的运算,再计算乘法运算,最后计算加减,从而可得答案;(2)先计算多项式乘以多项式,单项式乘以多项式,再合并同类项即可.【详解】解:(1) (2) 【考点】本题考查的
14、是零次幂与负整数指数幂的含义,整式的乘法运算,掌握零次幂与负整数指数幂的含义及整式的乘法运算的运算法则是解题的关键.3、 (1)30000个(2)58套【解析】【分析】(1)根据题设条件,表示出原计划用的时间,和扩大规模后用的时间,根据前后时间差为464天,可列分式方程,解方程即可得到答案;(2)由(1)可得扩大规模后的日产量,根据每套模具每天平均生产500个,可求出需要的模具总数,进而可得答案(1)解:设原计划的日产量为x个冰墩墩硅胶外壳,则扩大生产规模后每天生产30x个,由题意可得,解之得:x=1000,经检验x=1000是原方程的解且符合题意,30x=30000,所以扩大生产规模后每天生
15、产30000个冰墩墩硅胶外壳(2)解:扩大生产规模后每天生产30000个冰墩墩硅胶外壳,根据题意可得,需要的模具个数为个,所以为达到扩大生产规模后的日产量,至少需要增加60-2=58套模具【考点】本题考查分式方程的实际应用,准确理解题意,并根据题意找出等量关系是解题的关键4、7【解析】【分析】先计算绝对值运算、零指数幂、负整数指数幂,再计算有理数的加减法即可得【详解】原式【考点】本题考查了绝对值运算、零指数幂、负整数指数幂等知识点, 熟记各运算法则是解题关键5、 (1)节省228元(2)预算不足【解析】【分析】(1)根据第一次和第二次购买的数量和总金额列出方程,分别求出面包粉和蛋糕粉的单价,再计算出不打折的总价减去折后总价即为节省的钱;(2)根据题意列出方程求出降价后面包粉和蛋糕粉的单价,再计算出买5袋面包粉和8袋蛋糕粉的总价,然后与预算进行比较(1)解:设每袋面包粉x元,每袋蛋糕粉y元依题意得,解得(元)答:节省228元(2)解:设每袋面包粉降价m元,则每袋蛋糕粉降价2m元.解得m=4经检验,m=4符合题意故第四次购买时,面包粉每袋96元,蛋糕粉每袋72元,预算不足答:预算不够【考点】本题主要考查了二元一次方程组与实际问题和分式方程与实际问题,熟练运用二元一次方程组解决实际问题和分式方程解决实际问题是解答本题的关键