ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:1,015KB ,
资源ID:192057      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-192057-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(四川省成都市青白江区南开为明学校2019-2020学年高二数学下学期第三次月考试题 文(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

四川省成都市青白江区南开为明学校2019-2020学年高二数学下学期第三次月考试题 文(含解析).doc

1、四川省成都市青白江区南开为明学校2019-2020学年高二数学下学期第三次月考试题 文(含解析)一、选择题(每题5分,每题只有一个选项符合题意.合计60分)1. 已知虚数单位,等于( )A. B. C. D. 【答案】B【解析】试题分析:根据题意,有,故选B考点:复数的运算2. 点极坐标为,则它的直角坐标是( )A. B. C. D. 【答案】D【解析】 M点的直角坐标是故选D.3. 小明用流程图把早上上班前需要做的事情做了如图方案,则所用时间最少A. 23分钟B. 24分钟C. 26分钟D. 31分钟【答案】C【解析】分析:根据题干,起床穿衣煮粥吃早餐,同时完成其他事情共需26分钟,由此即可

2、解答问题.详解:根据题干分析,要使所用的时间最少,可设计如下:起床穿衣煮粥吃早餐,所用时间为:(分钟).故选C.点睛:此题属于合理安排时间问题,奔着既节约时间又不使每道工序相互矛盾即可解答4. 下列式子错误的是( )A. B. C. D. 【答案】B【解析】【分析】根据题意,依次计算选项函数的导数,综合即可得答案【详解】根据题意,依次分析选项:对于A,正确;对于B,错误;对于C,正确;对于D,正确;故选:B【点睛】本题考查导数的计算,关键是掌握导数的计算公式,属于基础题5. 曲线C经过伸缩变换后,对应曲线的方程为:,则曲线C的方程为( )A. B. C. D. 【答案】A【解析】【分析】从变换

3、规则入手,代入新方程化简可得.【详解】把代入得,化简可得,故选A.【点睛】本题主要考查坐标变换,明确变换前和变换后的坐标之间的关系是求解关键.6. 下列关于回归分析的说法中错误的有( )个.残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高.回归直线一定过样本中心(,).两个模型中残差平方和越小的模型拟合的效果越好.甲、乙两个模型的R2分别约为0.88和0.80,则模型乙的拟合效果更好A. 4B. 3C. 2D. 1【答案】C【解析】分析: 可以用来衡量模拟效果好坏的几个量分别是相关指数,残差平方和和相关系数,只有残差平方和越小越好,其他的都是越大越好详解:对于(1) 残差图中残

4、差点所在的水平带状区域越宽,则回归方程的预报精确度越低,故(1)错误;对于(2),回归直线一定过样本中心,(2)正确;对于(3),两个模型中残差平方和越小的模型拟合的效果越好,(3)正确;对于(4),越大,拟合效果越好,故(4)错误;故选C点睛:本题主要考查线性相关指数的理解,解题的关键是理解对于拟合效果好坏的几个量的大小反映的拟合效果的好坏,属于基础题7. 已知函数,则曲线在处的切线的倾斜角为( )A. B. C. D. 【答案】A【解析】【分析】求出,得切线的斜率为,即可求解.【详解】函数导数为,可得在处的切线的斜率为,即,为倾斜角,可得.故选:A.【点睛】本题考查切线的几何意义,属于基础

5、题.8. 有一段推理是:“直线平行于平面,则平行于平面内的所有直线;已知直线平面,直线平面,直线平面,则直线平面.”其结论显然是错误的,这是因为 ( )A. 使用了“三段论”,但大前提是错误的B. 使用了“三段论”,但小前提是错误的C. 使用了归纳推理D. 使用了类比推理【答案】A【解析】【分析】本题考查的知识点是演绎推理的基本方法及空间中线面关系,在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是逻辑错误,我们分析:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线平面,直线平面,则直线直线”的推理过程,不难得到结论【详解】解:直线平

6、行于平面,则直线可与平面内的直线平行、异面、异面垂直故大前提错误故选:【点睛】演绎推理的主要形式就是由大前提、小前提推出结论的三段论推理三段论推理的依据用集合论的观点来讲就是:若集合的所有元素都具有性质,是的子集,那么中所有元素都具有性质三段论的公式中包含三个判断:第一个判断称为大前提,它提供了一个一般的原理;第二个判断叫小前提,它指出了一个特殊情况;这两个判断联合起来,揭示了一般原理和特殊情况的内在联系,从而产生了第三个判断结论演绎推理是一种必然性推理,演绎推理的前提与结论之间有蕴涵关系因而,只要前提是真实的,推理的形式是正确的,那么结论必定是真实的,但错误的前提可能导致错误的结论9. 已知

7、是虚数单位,若,则复数在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】根据复数的乘法、除法运算法则和虚数单位的定义,求出,即可得出结论.【详解】,复数在复平面内对应的点的坐标为,位于第一象限故选:A.【点睛】本题考查复数的几何意义、代数运算,属于基础题.10. 对于常数、,“”是“方程的曲线是椭圆”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】【分析】时,如果,或,方程不是椭圆;当方程的曲线是椭圆时,则成立,即可得出结论.【详解】当时,方程的曲线不一定是椭圆,例如:当时

8、,方程的曲线不是椭圆而是圆;或者是,都是负数,曲线表示的也不是椭圆;故前者不是后者的充分条件;当方程的曲线是椭圆时,应有,都大于0,且两个量不相等,得到;由上可得:“”是“方程的曲线是椭圆”的必要不充分条件.故选:B.【点睛】本题考查必要不充分条件的判定,考查椭圆的标准方程,属于基础题.11. 函数f(x)的图象大致是( )A. B. C. D. 【答案】C【解析】【分析】求出f(x)的导函数,利用导数研究函数的单调性,然后结合图象得到答案.【详解】解:由f(x),得f(x),令g(x)1,则g(x)0,所以g(x)在(0,+)上单调递减,又g(e)0,g(e2)0,所以存x0(e,e2),使

9、得g(x0)0,所以当x(0,x0)时,g(x)0,f(x)0;当x(x0,+)时,g(x)0,f(x)0,所以f(x)在(0,x0)上单调递增,在(x0,+)上单调递减.故选:C.【点睛】本题考查了利用导数研究函数的单调性和零点存在定理,属中档题.12. 已知函数,对都有成立,则实数的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】由题意函数对都有, 可以分离出函数中的参数,转化为 ,只需即可,所以转化为导数的极值来解题.【详解】解:函数,对都有,当时,即,即为可化为令,则当时,单调递减.因此所以故实数的取值范围是故选B【点睛】对于不等式恒成立问题中求参数的取值范围,先分离

10、出参数,转化为求函数的导数,用导数判断出最值,求出最大值与最小值即可求出参数的范围.二、填空题(每题5分,合计20分)13. 参数方程(为参数)化成一般方程为_.【答案】【解析】【分析】消去参数即可得圆的标准方程,再将圆的标准方程化为圆的一般方程即可.【详解】参数方程即满足两式平方相加可得展开化为一般方程可得故答案为: 【点睛】本题考查了参数方程与普通方程的转化,圆的标准方程与一般式的转化,属于基础题.14. 已知具有线性相关关系的两个量之间的一组数据如表:012342.24.34.56.7 且回直线方程是,则的值为_【答案】4.8【解析】【分析】求出数据中心,代入回归方程即可求出m的值【详解

11、】2,0.952+2.6,解得m4.8故答案为4.8.【点睛】本题考查了线性回归方程的性质,属于基础题15. 如图是一个算法流程图,则输出S的值是_【答案】35【解析】试题分析:执行算法流程,有,不满足条件,不满足条件,不满足条件,满足条件,输出的值考点:程序框图16. 著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,把这样的一列数组成的数列称为“斐波那契数列”,则_.【答案】-1【解析】【分析】依次计算,用归纳法得出一般结论后计算题中式子的值【详解】由题意,由此可归纳出结论,是

12、1009个1和1010个1相乘,结果为1故答案为:1【点睛】本题考查归纳推理,考查由特殊到一般的归纳法通过计算前几项的值归纳出一般结论三、解答题(合计70分)17. 已知复数z=.(1)求复数z.(2)若z2+az+b=1-i,求实数a,b的值.【答案】(1)1+i;(2).【解析】试题分析:(1)由复数的运算法则,把复数等价转化为,能够得到复数的实部和虚部(2)把代入,得,由复数相等的充要条件,能够求出实数的值试题解析:(1)z=1+i.(2)把z=1+i代入z2+az+b=1-i,得(1+i)2+a(1+i)+b=1-i,整理得a+b+(2+a)i=1-i,所以解得点睛:本题主要考查了复数

13、的几何意义及复数的表示,解答中根据复数的表示和和复数的四则运算化简为复数的形式,再利用复数相等的坐标间的关系,得到方程,求解的值即可,其中熟练掌握复数的运算、表示和复数相等的条件是解答的关键18. 已知函数(1)求曲线在点处的切线方程;(2)若关于的方程有三个不同的实根,求实数的取值范围.【答案】(1)12xy170(2)(3,2)【解析】【分析】(1)将x2分别代入原函数解析式和导函数解析式,求出切点坐标和切线斜率,由点斜式可得曲线yf(x)在点(2,f(2)处的切线方程;(2)若关于x的方程f(x)+m0有三个不同的实根,则m值在函数两个极值之间,利用导数法求出函数的两个极值,可得答案【详

14、解】解:(1)当x2时,f(2)7故切点坐标为(2,7)又f(x)6x26xf(2)12即切线的斜率k12故曲线yf(x)在点(2,f(2)处的切线方程为y712(x2)即12xy170(2)令f(x)6x26x0,解得x0或x1当x0,或x1时,f(x)0,此时函数为增函数,当0x1时,f(x)0,此时函数为减函数,故当x0时,函数f(x)取极大值3,当x1时,函数f(x)取极小值2,若关于x的方程f(x)+m0有三个不同的实根,则2m3,即3m2故实数m的取值范围为(3,2)【点睛】本题考查的知识点是利用导数求曲线上过某点的切线方程,函数的极值,函数的零点,熟练掌握利用导数求切点斜率及极值

15、是解答的关键19. 某学校为了了解学生使用手机的情况,分别在高一和高二两个年级各随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生日均使用手机时间的频数分布表和频率分布直方图,将使用手机时间不低于80分钟的学生称为“手机迷”.(I)将频率视为概率,估计哪个年级的学生是“手机迷”的概率大?请说明理由.(II)在高二的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的22列联表,并据此资料你有多大的把握认为“手机迷”与性别有关?非手机迷手机迷合计男女合计附:随机变量(其中为样本总量).参考数据0.150.100.050.0252.0722.7063.84

16、15.024【答案】()高一年级,理由见解析;()列联表见解析,90%【解析】分析】()根据频数分布表和频率分布直方图,分别计算两个年级学生是“手机迷”的概率,即可比较,作出判断.()根据题意,求出手机迷人数和非手机迷人数,完善列联表,即可由独立性检验的公式求得,进而作出判断即可.【详解】()由频数分布表可知,高一学生是“手机迷”的概率为由频率分布直方图可知,高二学生是“手机迷”的概率为=(0.0025+0.010)20=0.25因为P1P2,所以高一年级的学生是“手机迷”的概率大.()由频率分布直方图可知,在抽取的100人中,“手机迷”有(0.010+0.0025)20100=25(人),非

17、手机迷有10025=75(人).从而22列联表如下:非手机迷手机迷合计男301545女451055合计7525100将22列联表中的数据代入公式计算,得结合参考数据,可知3.0302.706,所以有90%的把握认为“手机迷”与性别有关.【点睛】本题考查了频率分布表与频率分布直方图的简单应用,独立性检验中卡方计算与简单应用,属于基础题.20. 如图,在四棱锥VABCD中,底面ABCD是矩形,VD平面ABCD,过AD的平面分别与VB,VC交于点M,N.(1) 求证:BC平面VCD;(2) 求证:ADMN. 【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)证出VDBC,BCCD,利

18、用线面垂直的判定定理即可得证.(2)利用线面平行的性质定理即可证出.【详解】(1)在四棱锥VABCD中,因为VD平面ABCD,BC平面ABCD,所以VDBC.因为底面ABCD是矩形,所以BCCD.又CD平面VCD,VD平面VCD,CDVDD,则BC平面VCD.(2)因为底面ABCD是矩形,所以ADBC.又AD平面VBC,BC平面VBC,则AD平面VBC.又平面ADNM平面VBCMN,AD平面ADNM,则ADMN.【点睛】本题考查了线面垂直的判定定理、线面平行的性质定理,属于基础题.21. 在直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点P的极坐标为,直线l的极坐标方程

19、为cosa,且点P在直线l上.(1)求a的值及直线l的直角坐标方程;(2)曲线的极坐标方程为.若与交于两点,求的值.【答案】(1)a,l的直角坐标方程为xy20(2)【解析】【分析】(1)将点P的极坐标代入直线l的极坐标方程即可求得a的值,再直线l的极坐标方程化为直角坐标即可求解;(2)写出直线的参数方程,将直线的参数方程代入曲线的直角坐标方程,根据直线参数方程的几何意义代入即可求解。【详解】解析:(1)由点P直线cosa上,可得a,所以直线l的方程可化为cossin2,从而l的直角坐标方程为xy20.(2)由cosx,siny,曲线的极坐标方程为转化为直角坐标方程为把曲线的参数方程为(为参数

20、),代入得,设,是对应的参数,则,所以【点睛】此题考查直线参数方程的t的几何意义,将直线参数方程带去曲线直角坐标方程化简后根据韦达定理代入即可求解,属于较易题目。22. 已知函数的图像在点处的切线为(1)求函数的解析式;(2)当时,求证:;(3)若对任意的恒成立,求实数的取值范围.【答案】(1);(2)证明见解析;(3).【解析】【分析】(1)利用可求,从而可得的解析式.(2)等价于,令,利用导数可求也就是.(3)不等式等价于,令,利用导数可求在上的最小值后可得的取值范围.【详解】(1),由已知得解得,故.(2)令,由得.当时,单调递减;当时,单调递增.,从而.(3)对任意的恒成立对任意的恒成立.令,由(2)可知当时,恒成立令,得;得.的增区间为,减区间为,实数的取值范围为.【点睛】本题考查曲线的切线以及函数不等式的恒成立,对于函数不等式的恒成立问题,可构建新函数,再以导数为工具讨论新函数的单调性从而得到新函数的最值,最后由最值的正负得到不等式成立.如果函数不等式含有参数,则可以考虑参变分离的方法,把问题归结为不含参数的函数的最值问题.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3