ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:83KB ,
资源ID:191885      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-191885-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《优教通同步备课》高中数学(北师大版)选修2-2教案:第2章 拓展资料:导数几何意义的应用分类解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《优教通同步备课》高中数学(北师大版)选修2-2教案:第2章 拓展资料:导数几何意义的应用分类解析.doc

1、导数几何意义的应用分类解析函数yf(x)在点x0处的导数的几何意义就是曲线yf(x)在点P(x0,y0)处的切线的斜率.它把函数的导数与曲线的切线联系在一起,使导数成为函数知识与解析几何知识交汇的一个重要载体.因此,用导数解决与切线有关的问题将是高考命题的一个热点.下面就导数几何意义的应用分类解析.一、切线的夹角问题例1已知抛物线yx24与直线yx2相交于A、B两点,过A、B两点的切线分别为l1和l2.(1)求直线l1与l2的夹角.解析:由方程组,解得A(2,0),B(3,5),由y2x,则y|x24,y|x36,设两直线的夹角为,根据两直线的夹角公式,tan|,所以arctan.点拨:解答此

2、类问题分两步:第一步根据导数的几何意义求出曲线两条切线的斜率;第二步利用两条直线的夹角公式求出结果(注意两条直线的夹角公式有绝对值符号).二、两条曲线的公切线问题例2已知抛物线C1:yx22x和C2:yx2a.如果直线l同时是C1和C2的切线,称直线l是C1和C2的公切线,公切线上两个切点之间的线段,称为公切线段.(1)a取什么值时,C1和C2有且仅有一条公切线?写出此公切线的方程;(2)若C1和C2有两条公切线,证明相应的两条公切线段互相平分.解析:(1)函数yx22x的导数y2x2,曲线C1在点P(x1,x2x1)处的切线方程是y(x2x1)(2x12)(xx1),即y(2x12)xx,函

3、数yx2a的导数y2x,曲线C2在点Q(x2,xa)处的切线方程是y(xa)2x2(xx2),即y2x2xxa,如果直线l是过P和Q的公切线,则式和式都是直线l的方程,所以,消去x2得方程2x2x11a0.当判别式442(1a)0时,即a时,解得x1,此时点P和Q重合,即当a时,C1和C2有且仅有一条公切线,由得公切线的方程为yx.()证明:略点拨:解答此类问题分三步:第一步分别在两条曲线设出切点,并求出切线方程;第二步根据两个切线方程表示同切线,利用直线重合的条件建立一个二次方程;第三步根据切线的唯一性,结合判别式为零求出结果.三、切线逆向运算问题例3已知b1,c0,函数f(x)xb的图象与

4、函数g(x)x2bxc的图象相切.求b与c的关系式(用c表示b);解析:(1)依题意,令f(x)g(x),得2xb1,故x,由于f()g(),得(b1)24c,b1,c0,b1c.例4曲线yx3在点(a,a3)(a0)处的切线与x轴、直线xa所围成的三角形的面积为,则a_.解析:y3x2,切线斜率为3a2,方程为ya33a2(xa),当y0时,xa,当xa时,ya3,则|a3|aa|,解得a1.点拨:上面两题通过求导,利用导数在某点几何意义求切线斜率的值或相对应的切线方程,建立等式或不等式,进而解决参数问题.四其它综合问题例5已知函数f(x)x3x2,数列xn(xn0)的第一项xn1,以后各项

5、按如下方式取定:曲线xf(x)在(xn+1,f (xn+1))处的切线与经过(0,0)和(xn,f (xn))两点的直线平行(如图)求证:当nN*时,()xxn3x2xn1;()()n1xn()n-2.证明:(I)因为f(x)3x22x所以曲线yf(x)在(xn+1,f (xn+1))处的切线斜率kn+13x2xn+1,因为过(0,0)和(xn,f (xn))两点的直线斜率是xxn,所以xxn3x2xn+1.(II)因为函数h(x)x2x当x0时单调递增,而xxn3x2xn+14x2xn+1(2xn+1)22xn+1,所以xn2xn+1,即因此xn()n-1,又因为xxn2(xxn+1) ,令

6、ynxxn,则,因为y1xx12,所以yn()n-1y1()n-2,因此xnxxn()n-2,故()n-1xn()n-2.点拨:本题主要考查函数的导数、数列、不等式等基础知识,以及不等式的证明,同时考查逻辑推理能力.上述解法通过利用利用导数的几何意义求出切线的斜率建立数列递推公式,为第二小题的解答提供了条件.跟踪练习1、已知曲线C1:yx22x2和曲线C2:yx33x2x5有一个公共点P(2,2),求过点P处两条曲线的切线的夹角.2、已知函数f(x)2x3ax,g(x)bx2c的图象都过点P(2,0),且在点P处有公切线,求a,b,c及f(x),g(x)的表达式.3、确定抛物线方程yx2bxc

7、中的常数b和c,使得抛物线与直线y2x在x2处相切.4、设整数k0,1.过点P(1,0)作曲线C:yxk(x0)的切线,切点为Q1,设点Q1在x轴上的射影是点P1;又过点P1作曲线C的切线,切点为Q2,设点Q2在x轴上的射影是点P2,这样一直作下去,可得到一系列点Q1,Q2,.设点Qn(n1,2,)的横坐标构成数列an.证明an是等比数列.参考答案1、解:yx22x2,y2x2,过点P曲线C1的切线斜率为k12222,又yx33x2x5,y3x26x,过点P曲线C1的切线斜率为k232262,设两直线的夹角为,根据两直线的夹角公式,得tan|,所以arctan.2、解:f(x)2x3ax的图象

8、过点P(2,0),故a8,故f(x)2x38x,又 f(x)6x28,f(2)16,由g(x)bx2c的图象过点P(2,0),得4bc0.又g(x)2bx,g(2)4bf(2)16,b4,从而c16,f(x)2x38x,g(x)4x216.3、解:2xb,ky|x=24b=2,b2.又当x2时,y22(2)2cc,代入y2x,得c4. 4、解:ykxk1,y|xankank1,以Qn(an,ank)为切点的切线方程为yankkank1(xan),当n1时,切线过点P(1,0),0a1kka1k1(1a1)a1,当n2时,切线过点Pn1(an1,0),0ankkank1(an1an)anan1,整数k0,1,a10,an是等比数列.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3