1、人教版九年级数学上册第二十五章概率初步章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是
2、()A抛一枚硬币,正面朝上的概率B掷一枚正六面体的骰子,出现点的概率C转动如图所示的转盘,转到数字为奇数的概率D从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率2、下列成语所描述的事件属于不可能事件的是()A水落石出B水涨船高C水滴石穿D水中捞月3、一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A20B24C28D304、下列命题是真命题的是()A相等的两个角是对顶角B相等的圆周角所对的弧相等C若,则D在一个不透明
3、的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是5、有6张扑克牌(如图),背面朝上,从中任抽一张,则抽到方块牌的概率是()ABCD6、某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()ABCD7、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是()ABCD8、下列事件:(1)打开电视机,正在播放新闻;(2)下个星期天会下雨;(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1;(4)一个有理数的平方一定是非
4、负数;(5)若,异号,则;属于确定事件的有()个A1B2C3D49、下列事件中,属于不可能事件的是()A某投篮高手投篮一次就进球B打开电视机,正在播放世界杯足球比赛C掷一次骰子,向上的一面出现的点数不大于6D在1个标准大气压下,90 的水会沸腾10、一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、七巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组
5、成小虹同学利用七巧板拼成的正方形做“滚小球游戏”,小球可以在拼成的正方形上自由地滚动,并随机地停留在某块板上,如图所示,那么小球最终停留在阴影区域上的概率是_2、小明将飞镖随意投中如图所示的正方体木框中,那么投中阴影部分的概率为_3、小林掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有1、2、3、4、5、6,他把第一次掷得的点数记为x,第二次掷得的点数记为y,则分别以这两次掷得的点数值为横、纵坐标的点恰好在直线上的概率是_4、如图,在“33”网格中,有3个涂成黑色的小方格若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是_5、某班共有36名同学,其中男生16人,喜
6、欢数学的同学有12人,喜欢体育的同学有24人从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是_三、解答题(5小题,每小题10分,共计50分)1、 “共和国勋章”获得者钟南山院士说:按照疫苗保护率达到70%计算,中国的新冠疫苗覆盖率需要达到近80%,才有可能形成群体免疫,本着自愿的原则,18至60周岁符合身体条件的中国公民均可免费接种新冠疫苗居民甲、乙准备接种疫苗,其居住地及工作单位附近有两个大型医院和两个社区卫生服务中心均可免费接种疫苗,提供疫苗种类如下表:接种地点疫苗种类医院A新冠病毒灭活疫
7、苗B重组新冠病毒疫苗(CHO细胞)社区卫生服务中心C新冠病毒灭活疫苗D重组新冠病毒疫苗(CHO细胞)若居民甲、乙均在A、B、C、D中随机独立选取一个接种点接种疫苗,且选择每个接种点的机会均等(提示:用A、B、C、D表示选取结果)(1)求居民甲接种的是新冠病毒灭活疫苗的概率;(2)请用列表或画树状图的方法求居民甲、乙接种的是相同种类疫苗的概率2、圆周率是无限不循环小数历史上,祖冲之、刘徽、韦达、欧拉等数学家都对有过深入的研究目前,超级计算机已计算出的小数部分超过31.4万亿位有学者发现,随着小数部分位数的增加,09这10个数字出现的频率趋于稳定,接近相同(1)从的小数部分随机取出一个数字,估计数
8、字是6的概率为_;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率(用画树状图或列表方法求解)3、从2021年起,江苏省高考采用“”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选科,“2”是指在化学、生物、思想政治、地理4科中任选2科(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是_;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2中选化学、生物的概率4、第24届北京冬奥会的开幕式中,“二十四节气的开幕式倒计时”向全世界人民展示了中华文化源远流长的特点,尽显中国式浪漫杨老师
9、为了让学生深入的了解二十四节气,将每个节气的名称写在形状大小都一样的小卡片上,并将卡片倒扣在桌面上,邀请同学上讲台随机抽取一张卡片,并向大家介绍卡片上对应节气的含义(1)请问随机抽取一张卡片,上面写有“立春”的概率为 ;(2)若老师将属于春季的“立春、雨水,惊蛰、春分、清明、谷雨”六张卡片单独拿出,邀请小明和小华同时抽取请利用画树状图或列表的方法,求两人抽到的卡片上写有相同的字的概率5、小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为14的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字若两次数字之和大于5,则小颖胜,否则小丽胜这个游戏对双方公平
10、吗?请说明理由-参考答案-一、单选题1、D【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,计算四个选项的概率,约为0.33者即为正确答案【详解】解:A、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B、掷一枚正六面体的骰子,出现点的概率为,故此选项不符合题意;C、转动如图所示的转盘,转到数字为奇数的概率为,故此选项不符合题意;D、从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率为,故此选项符合题意故选:D【考点】此题考查了利用频率估计概率,属于常见题型,明确大量反复试验下频率稳定值即概率是解答的关键2、D【解析】【分析】根据不可能事件的定义:在一定
11、条件下一定不会发生的事件是不可能事件,进行逐一判断即可【详解】解:A、水落石出是必然事件,不符合题意;B、水涨船高是必然事件,不符合题意;C、水滴石穿是必然事件,不符合题意;D、水中捞月是不可能事件,符合题意;故选D【考点】本题主要考查了不可能事件,熟知不可能事件的定义是解题的关键3、D【解析】【分析】直接由概率公式求解即可.【详解】根据题意得=30%,解得:n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球故选:D【考点】本题考查由频率估计概率、简单的概率计算,熟知求概率公式是解答的关键.4、D【解析】【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进
12、行判断即可得到答案【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B选项错误,不符合题意;若,则,故C选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是,故D选项正确,符合题意;故选:D【考点】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键5、A【解析】【分析】m表示事件A发生可能出现的次数,n表示一次试验所有等可能出现的次数;代入公式即可求得概率.【详解】解:观察图形知:6张
13、扑克中有2张方块,所以从中任抽一张,则抽到方块的概率 故选A【考点】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.6、D【解析】【分析】随机事件A的概率事件A可能出现的结果数所有可能出现的结果数【详解】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率,故选D【考点】本题考查了概率,熟练掌握概率公式是解题的关键7、C【解析】【分析】利用列表法或树状图即可解决【详解】分别用r、b代表红色帽子、黑色帽子,用R、B、W分别代表红色围巾、黑色围巾、白色围巾,列表如下:RBWrrRrBrWbbRbBbW则所有可能的结果数为6种,其中恰好为
14、红色帽子和红色围巾的结果数为1种,根据概率公式,恰好为红色帽子和红色围巾的概率是故选:C【考点】本题考查了简单事件的概率,常用列表法或画树状图来求解8、B【解析】【分析】根据事件发生的可能性大小逐一判断相应事件的类型,即可得答案【详解】(1)打开电视机,正在播放新闻是随机事件,(2)下个星期天会下雨是随机事件,(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1是不可能事件,是确定事件,(4)一个有理数的平方一定是非负数是确定事件,(5)若a、b异号,则a+b0是随机事件综上所述:属于确定事件的有(3)(4),共2个,故选:B【考点】本题考查的是必然条件、不可能事件、随机事件的概念,必然事件指
15、在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握基础知识是解题的关键9、D【解析】【分析】不可能事件就是一定不会发生的事件,依据定义即可判断【详解】A、是随机事件,故A选项错误;B、是随机事件,故B选项错误;C、是必然事件,故C选项错误;D、是不可能事件,故D选项正确故选D【考点】本题考查了不可能事件的定义,解题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发
16、生的事件10、C【解析】【详解】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=,故选C【考点】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比 二、填空题1、【解析】【分析】设大正方形的边长为2,先求出阴影区域的面积,然后根据概率公式即可解题【详解】解:设大正方形的边长为2,则GE=1,E到DC的距离d=阴影区域的面积为:大正方形的面积是:小球最终停留在阴影区域
17、上的概率是:【考点】本题考查几何概率,掌握相关知识是解题关键2、【解析】【分析】根据题意,设每个小正方形面积为1,观察图形并计算可得阴影部分的面积与总面积之比即为所求的概率【详解】设小正方形面积为1,观察图形可得,图形中共36个小正方形,则总面积为36,其中阴影部分面积为:2+2+3+3=10,则投中阴影部分的概率为:=.故答案为.【考点】本题考查几何概率,解题的关键是熟练掌握几何概率的求法.3、【解析】【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与点B(x,y)恰好在直线上的情况,再利用概率公式求得答案【详解】解:列表如下:第一次第二次1234561(1,1)(2,1)(3,
18、1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)共有36种等可能的结果,点B(x,y)恰好在直线上的有:(1,6),(2,4),(3,2),点B(x,y)恰好在直线上的概率是:故答案为:【考点】本题考查的是用列表法或树状图法求概率注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步
19、完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比4、故答案为: 【考点】本题考查了利用频率估计概率,解题的关键是熟练掌握大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随试验次数的增多,值越来越精确6【解析】【详解】解:有6种等可能的结果,符合条件的只有2种,则完成的图案为轴对称图案的概率是故答案为:【考点】本题考查了轴对称图形的定义,求某个事件的概率,能够正确找到轴对称图案的个数是解题的关键5、cab【解析】【
20、分析】根据概率公式分别求出各事件的概率,故可求解【详解】依题意可得从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为,这名同学喜欢数学的可能性为,这名同学喜欢体育的可能性为,a,b,c的大小关系是cab故答案为:cab【考点】本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比三、解答题1、(1);(2)【解析】【分析】(1)利用概率公式直接计算即可;(2)先列表求解所有的等可能的结果数,再得到符合条件的结果数,从而利用概率公式进行计算即可.【详解】解:(1)由概率的含义可得:居民甲接种的是新冠病毒灭活疫苗的概率是 (2)列表如下: 由表中信息可得一共有种等
21、可能的结果数,属于同种疫苗的结果数有:,共 种,所以居民甲、乙接种的是相同种类疫苗的概率为:【考点】本题考查的是随机事件的概率,利用列表法或画树状图求解概率,掌握列表的方法与画树状图的方法是解题的关键.2、(1);(2)见解析,【解析】【分析】(1)这个事件中有10种等可能性,其中是6的有一种可能性,根据概率公式计算即可;(2)画出树状图计算即可.【详解】(1)这个事件中有10种等可能性,其中是6的有一种可能性,数字是6的概率为,故答案为:;(2)解:画树状图如图所示:共有12种等可能的结果,其中有一幅是祖冲之的画像有6种情况(其中有一幅是祖冲之)【考点】本题考查了概率公式计算,画树状图或列表
22、法计算概率,熟练掌握概率计算公式,准确画出树状图或列表是解题的关键3、(1);(2)图表见解析,【解析】【分析】(1)小丽在“2”中已经选择了地理,还需要从剩下三科中进行选择一科生物,根据概率公式计算即可(2)小明在“1”中已经选择了物理,可直接根据画树状图判断在4科中选择化学,生物的可能情况有2种,再根据一共有12种情况,通过概率公式求出答案即可【详解】(1);(2)列出树状图如图所示:由图可知,共有12种可能结果,其中选化学、生物的有2种,所以,(选化学、生物)答:小明同学选化学、生物的概率是【考点】本题考查了等可能概率事件,以及通过列表法或画树状图法判断可能情况概率,根据概率公式事件概率
23、情况,解题关键在于要理解掌握等可能事件发生概率4、 (1);(2) 【解析】【分析】(1)根据概率公式,用写有“立春”的卡片数除以总卡片数即可得出答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与小明和小华同时抽取到的卡片上写有相同字的情况,再利用概率公式求解即可求得答案;(1)解:解: 共有24张卡片,其中写有“立春”的卡片数为1, 抽取到写有“立春”的概率为;(2)解:立春雨水惊蛰春分清明谷雨立春(立春,雨水)(立春,惊蛰)(立春,春分)(立春,清明)(立春,谷雨)雨水(雨水,立春)(雨水,惊蛰)(雨水,春分)(雨水,清明)(雨水,谷雨)惊蛰(惊蛰,立春)(惊蛰,雨水)(惊
24、蛰,春分)(惊蛰,清明)(惊蛰,谷雨)春分(春分,立春)(春分,雨水)(春分,惊蛰)(春分,清明)(春分,谷雨)清明(清明,立春)(清明,雨水)(清明,惊蛰)(清明,春分)(清明,谷雨)谷雨(谷雨,立春)(谷雨,雨水)(谷雨,惊蛰)(谷雨,春分)(谷雨,清明) 共有30种等可能性的结果,其中写有相同字的有4种可能性,分别是:(谷雨,雨水)、(雨水,谷雨) 、(春分,立春)、(立春,春分); 两人抽到的卡片上写有相同的字的概率为:P(抽到相同字)=【考点】本题考查了列表法与树状图法,利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m是解题的关键,然后利用概率公式计算事件A或事件B的概率5、不公平;理由见解析【解析】【详解】试题分析:根据题意画出树状图,再分别求出两次数字之和大于5和两次数字之和不大于5的概率,如果概率相等,则游戏公平,如果不概率相等,则游戏不公平;试题解析:根据题意,画树状图如下:P(两次数字之和大于5) ,P(两次数字之和不大于5) ,游戏不公平;