ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:163.57KB ,
资源ID:191438      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-191438-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《新教材》2021-2022学年高中数学人教B版选择性必修第二册课后巩固提升:3-1-1 基本计数原理 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《新教材》2021-2022学年高中数学人教B版选择性必修第二册课后巩固提升:3-1-1 基本计数原理 WORD版含解析.docx

1、高考资源网() 您身边的高考专家第三章排列、组合与二项式定理3.1排列与组合3.1.1基本计数原理课后篇巩固提升必备知识基础练1.(2020浙江期中)某校教学大楼共有五层,每层均有两个楼梯,一学生由一层到五层的走法有()A.10种B.25种C.52种D.24种解析D解析共分4步:一层到二层2种走法,二层到三层2种走法,三层到四层2种走法,四层到五层2种走法,根据分步乘法计数原理,一共有24种.选故D.2.(2021河南信阳模拟)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,三位同学依次选一

2、个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有()A.30种B.50种C.60种D.90种答案B解析若甲同学选择牛,则乙同学有2种选法,丙同学有10种选法,共有1210=20种满意的选法,若甲同学选择马,则乙同学有3种选法,丙同学有10种选法,共有1310=30种满意的选法,所以总共有20+30=50种令三位同学满意的选法.故选B.3.如果x,yN+,且1x3,x+y7,则满足条件的有序数对(x,y)的个数是()A.15B.12C.5D.4答案B解析当x=1时,y=1,2,3,4,5;当x=2时,y=1,2,3,4;当x=3时

3、,y=1,2,3.由分类加法计数原理得,有序数对有5+4+3=12个.4.如果一个三位正整数如“a1a2a3”满足a1a2,且a3a2,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()A.240B.204C.729D.920答案A解析分8类.当中间数为2时,有12=2个;当中间数为3时,有23=6个;当中间数为4时,有34=12个;当中间数为5时,有45=20个;当中间数为6时,有56=30个;当中间数为7时,有67=42个;当中间数为8时,有78=56个;当中间数为9时,有89=72个.故共有2+6+12+20+30+42+56+72=240个.5.(2020上

4、海春季高考)已知A=-3,-2,-1,0,1,2,3,a,bA,则|a|b|的情况有种.答案18解析当a=-3时,符合条件的情况有0种;当a=-2时,符合条件的情况有2种;当a=-1时,符合条件的情况有4种;当a=0时,符合条件的情况有6种;当a=1时,符合条件的情况有4种;当a=2时,符合条件的情况有2种;当a=3时,符合条件的情况有0种.依据分类加法计数原理,共有2+4+6+4+2=18种.6.有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中任取两本不同类的书,共有种不同的取法.答案242解析任取两本不同类的书分为三类:取数学、语文各一本;取语文、英语各一本;取数学、英语各一

5、本.在每一类中利用分步乘法计数原理,再利用分类加法计数原理即可.共有109+98+108=242种不同取法.7.椭圆=1的焦点在y轴上,且m1,2,3,4,5,n1,2,3,4,5,6,7,则这样的椭圆的个数为.答案20解析当m=1时,n=2,3,4,5,6,7,有6种取法;当m=2时,n=3,4,5,6,7,有5种不同取法;当m=3时,n=4,5,6,7,有4种不同取法;当m=4时,n=5,6,7,有3种不同取法;当m=5时,n=6,7,有2种不同取法,故这样的椭圆共有6+5+4+3+2=20个.8.将4种蔬菜种植在如图所示的5块试验田里,每块试验田种植一种蔬菜,相邻试验田不能种植同一种蔬菜

6、,不同的种法有种.(种植品种可以不全)答案324解析分五步,由左到右依次种植,种法分别有4,3,3,3,3种.由分步乘法计数原理,不同的种法有43333=324种.9.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的情况有多少种?解分两类完成.第一类,甲企业有1人发言,有2种情况,另两个发言人来自其余4家企业,有6种情况,由分步乘法计数原理知有26=12种情况;第二类,3人全来自其余4家企业,有4种情况.根据分类加法计数原理,共有12+4=16种情况.10.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五

7、个数字中任取两个不同的数字,则方程所表示的不同直线共有多少条?解分两类完成.第一类,当A或B中有一个为0时,表示的直线为x=0或y=0,共2条.第二类,当A,B不为0时,直线Ax+By=0被确定需分两步完成:第一步,确定A的值,有4种不同的方法;第二步,确定B的值,有3种不同的方法.由分步乘法计数原理知,共可确定43=12条直线.由分类加法计数原理知,方程所表示的不同直线共有2+12=14条.关键能力提升练11.算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图:表示多位数时,个位用纵式,十位用横式,

8、百位用纵式,千位用横式,以此类推,遇零则置空,如图:如果把5根算筹以适当的方式全部放入下面的表格中,那么可以表示的三位数的个数为()A.46B.44C.42D.40答案B解析按每一位算筹的根数分类一共有15种情况,如下:(5,0,0),(4,1,0),(4,0,1),(3,2,0),(3,1,1),(3,0,2),(2,3,0),(2,2,1),(2,1,2),(2,0,3),(1,4,0),(1,3,1),(1,2,2),(1,1,3),(1,0,4),1根以上的算筹可以表示两个数字,运用分步乘法计数原理,则上述情况能表示的三位数的个数分别为2,2,2,4,2,4,4,4,4,4,2,2,4

9、,2,2,根据分类加法计数原理,5根算筹能表示的三位数的个数为2+2+2+4+2+4+4+4+4+4+2+2+4+2+2=44.故选B.12.用0,1,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279答案B解析由分步乘法计数原理知:用0,1,9十个数字组成的三位数(含有重复数字的)共有91010=900个,组成无重复数字的三位数共有998=648个,因此组成有重复数字的三位数共有900-648=252个.13.高二年级的三个班去甲、乙、丙、丁四个工厂参观学习,去哪个工厂可以自由选择,但甲工厂必须有班级要去,则不同的参观方案的种数为()A.16B.18C

10、.37D.48答案C解析根据题意,若不考虑限制条件,每个班级都有4种选择,共有444=64种情况.其中工厂甲没有班级去,即每个班都选择了其他三个工厂,此时每个班级都有3种选择,共有333=27种方案.则符合条件的参观方案有64-27=37种.故选C.14.5名同学在“五一”的4天假期中,随便选择一天参加社会实践,不同的选法种数是()A.10B.60C.54D.45答案D解析5名同学在“五一”的4天假期中,随便选择一天参加社会实践,不同的选法种数是44444=45,故选D.15.某县总工会利用业余时间开设太极、书法、绘画三个培训班,甲、乙、丙、丁四人报名参加,每人只报名参加一项,且甲乙不参加同一

11、项,则不同的报名方法种数为.答案54解析甲有三个培训可选,甲乙不参加同一项,所以乙有两个培训可选,丙、丁各有三个培训可选,根据分步乘法计数原理,不同的报名方法种数为3233=54.16.在某运动会的百米决赛上,8名男运动员参加100米决赛,其中甲、乙、丙3人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有种.答案2 880解析分两步安排这8名运动员.第1步:安排甲、乙、丙3人,共有1,3,5,7四条跑道可安排,安排方式有432=24种;第2步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,安排方式有54321=120种.所以安排这8人

12、的方式有24120=2 880种.17.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网络联系,连线上标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为.答案19解析由题图可知,从A到B有4种不同的传递路线,各路线上单位时间内通过的最大信息量自上而下分别为3,4,6,6,依据分类加法计数原理,单位时间内传递的最大信息量为3+4+6+6=19.18.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不

13、同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?解从O型血的人中选1人有28种不同的选法.从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选择哪种血型的哪一个人,这件“任选1人去献血”的事情都能完成,所以由分类加法计数原理,共有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这件“各选1人去献血”的事情才完成,所以用分步乘法计数原理,共有28793=5 292种不同的选法.学科素养拔高练19.某学校高二年级有12名语文教师

14、、13名数学教师、15名英语教师,市教育局拟召开一个新课程研讨会.(1)若选派1名教师参会,有多少种派法?(2)若三个学科各派1名教师参会,有多少种派法?(3)若选派2名不同学科的教师参会,有多少种派法?解(1)分三类:第一类选语文老师,有12种不同选法;第二类选数学老师,有13种不同选法;第三类选英语老师,有15种不同选法,共有12+13+15=40种不同的选法.(2)分三步:第一步选语文老师,有12种不同选法;第二步选数学老师,有13种不同选法;第三步选英语老师,有15种不同选法,共有121315=2 340种不同的选法.(3)分三类:第一类选一位语文老师和一位数学老师共有1213种不同的选法;第二类选一位语文老师和一位英语老师共有1215种不同的选法;第三类选一位英语老师和一位数学老师共有1513种不同的选法,共有1213+1215+1315=531种不同的选法.- 5 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3